Recombinant tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) is an antitumor protein that is in clinical trials as a potential anticancer therapy but suffers from drug properties that may limit efficacy such as short serum half-life, stability, cost, and biodistribution, particularly with respect to the brain. To overcome such limitations, we identified TRAIL-inducing compound 10 (TIC10), a potent, orally active, and stable small molecule that transcriptionally induces TRAIL in a p53-independent manner and crosses the blood-brain barrier. TIC10 induces a sustained up-regulation of TRAIL in tumors and normal cells that may contribute to the demonstrable antitumor activity of TIC10. TIC10 inactivates kinases Akt and extracellular signal–regulated kinase (ERK), leading to the translocation of Foxo3a into the nucleus, where it binds to the TRAIL promoter to up-regulate gene transcription. TIC10 is an efficacious antitumor therapeutic agent that acts on tumor cells and their micro-environment to enhance the concentrations of the endogenous tumor suppressor TRAIL.
Chemokines and their receptors might be involved in the selection of specific organs by metastatic cancer cells. For instance, the CXCR4-SDF-1␣ pair regulates adhesion and migration of breast as well as prostate cancer cells to metastatic sites. In this study, we present the first evidence for the expression of CX3CR1-the specific receptor for the chemokine fractalkine-by human prostate cancer cells, whereas human bone marrow endothelial cells and differentiated osteoblasts express fractalkine. The adhesion of prostate cancer cells to human bone marrow endothelial cells in flow conditions is significantly reduced by a neutralizing antibody against fractalkine, and they migrate toward a medium conditioned by osteoblasts, which secrete the soluble form of the chemokine. Finally, fractalkine activates the PI3K/Akt survival pathway in human prostate cancer cells.
Curative responses in the treatment of multiple myeloma (MM) are limited by the emergence of therapeutic resistance. To address this problem, we set out to identify druggable mechanisms that convey resistance to proteasome inhibitors (PIs; e.g., bortezomib), which are cornerstone agents in the treatment of MM. In isogenic pairs of PI sensitive and resistant cells, we observed stark differences in cellular bioenergetics between the divergent phenotypes. PI resistant cells exhibited increased mitochondrial respiration driven by glutamine as the principle fuel source. To target glutamine-induced respiration in PI resistant cells, we utilized the glutaminase-1 inhibitor, CB-839. CB-839 inhibited mitochondrial respiration and was more cytotoxic in PI resistant cells as a single agent. Furthermore, we found that CB-839 synergistically enhanced the activity of multiple PIs with the most dramatic synergy being observed with carfilzomib (Crflz), which was confirmed in a panel of genetically diverse PI sensitive and resistant MM cells. Mechanistically, CB-839 enhanced Crflz-induced ER stress and apoptosis, characterized by a robust induction of ATF4 and CHOP and the activation of caspases. Our findings suggest that the acquisition of PI resistance involves adaptations in cellular bioenergetics, supporting the combination of CB-839 with Crflz for the treatment of refractory MM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.