Monolayer, few‐layer, and thin‐film MoS2 is synthesized using chemical vapor deposition (CVD) and thermal vapor sulfurization (TVS) methods. The complex refractive index of these samples is assessed using variable angle spectroscopic ellipsometry (VASE) measurements over a broad spectral range between 190 and 1700 nm. The ellipsometry data are sensitive to birefringence effects in the thickest thin‐film sample. These birefringence effects are investigated, and an analysis method is developed to extract the in‐plane and out‐of‐plane optical properties. The complex refractive index is then used to calculate reflectance, transmittance, and absorption of the MoS2 films using the transfer‐matrix method (TMM) and is matched with experimentally measured transmittance of the same samples. The modeled results show that the monolayer, few‐layer, and thin‐film MoS2 absorbs 7.4%, 12.6%, and 32.4% of the incident light, respectively, between 300 and 700 nm. When normalized to per unit‐thickness absorption, they absorb 12.1%, 5.9%, and 1.1% nm−1, respectively, clearly showing superior light–matter interaction in the monolayer and few‐layer films. These new complex refractive index data are further used to design optical coatings for these films to either confine absorption in a narrow bandwidth for photodetector applications or enhance broadband absorption for photovoltaic applications.
It was recently reported that the most popular electron-accepting units introduced to π-conjugated oligomers studied for organic photovoltaic applications are susceptible to unwanted and even destructive photochemical reactions. The consequences of Z/E photoisomerization of the popular 2-(1,1dicyanomethylene)rhodanine (RCN) unit on the optical and morphological properties of a homologous series of RCNfunctionalized oligothiophenes are studied here. Oligomers consisting of one, two, or three thiophene units were studied as pure Z isomers and with E isomer compositions of 25, 53, and 45%, respectively, for Z/E mixtures. Solutions of Z isomers and Z/E mixtures were characterized by UV−vis and photoluminescence spectroscopy, wherein changes to optical properties were evaluated on the basis of E isomer content. X-ray diffraction of thin-film Z/E mixtures reveals crystalline domains of both Z and E forms after thermal annealing for mono-and bithiophene oligomers, with greater interplanar spacing for E crystalline domains than the Z counterparts along the substrate normal direction. The surface morphology viewed by atomic force microscopy also shows fiberlike structures for the E form with a much larger aspect ratio than for the Z domains in the bithiophene oligomer. Optical characterization reveals drastic changes in the solid state upon introduction of the E form for the mono-and bithiophene derivatives, whereas subtle consequences are noted for the terthiophene analogue. Most notably, a 132 nm redshift in maximum absorption occurs for the bithiophene oligomer films containing 53% E isomer compared to the pure Z counterpart. Finally, although solid-state photoisomerization experiments find no evidence of Z → E isomerization in polycrystalline Z films, E → Z isomerization is observed and becomes more restrictive in films with higher crystallinity (i.e., after thermal annealing). This structure−property study, which elucidates the consequences of the RCN configuration on solid-state packing and optical properties, is expected to guide the development of more efficient and stable organic optoelectronic devices.
Amide derivatives of xanthene dyes such as rhodamine B are useful in a variety of sensing applications due to their colorimetric responses to stimuli such as acidity changes and UV light. The optical properties of these molecules can be influenced by intermolecular associations into dimeric structures, but the exact impact can be hard to predict. We have designed a covalently linked intramolecular dimer of the dye rhodamine B utilizing p-phenylenediamine to link the two dyes via amide bonds. The doubly closed spirolactam version of this dimer, RSL 2 , is isolated as a colorless solid. Under acidic conditions or UV exposure, RSL 2 solutions develop a pink color that is expected for the ring-opened form of the molecule. However, nuclear magnetic resonance (NMR) and single-crystal diffraction data show that the equilibrium still prefers the closed dimer state. Interestingly, the emission profile of RSL 2 shows solvatochromic blue fluorescence. Control studies of model compounds with similar structural motifs do not display similar blue fluorescence, indicating that this optical behavior is unique to the dimeric form. This behavior may lend itself to applications of such xanthene dimers to more sophisticated sensors beyond those with traditional binary on/off fluorescence profiles.
Amide derivatives of xanthene dyes such as rhodamine B are useful in a variety of sensing applications due to their colorimetric responses to stimuli such as acidity changes and UV light. The optical properties of these molecules can be influenced by intermolecular associations into dimeric structures, but the exact impact can be hard to predict. We have designed a covalently linked intramolecular dimer of the dye rhodamine B utilizing p-phenylene diamine to link the two dyes via amide bonds. The doubly closed spirolactam version of this dimer, RSL2, is isolated as a colorless solid. Under acidic conditions or UV exposure, RSL2 solutions develop a pink color that is expected for the ring-opened form of the molecule. However, NMR and single crystal diffraction data show that the equilibrium still prefers the closed dimer state. Interestingly, the emission profile of RSL2 shows solvatochromic blue fluorescence. Control studies of model compounds with similar structural motifs do not display similar blue fluorescence, indicating that this optical behavior is unique to the dimeric form. This behavior may lend itself to applications of such xanthene dimers to more sophisticated sensors beyond those with traditional binary on/off fluorescence profiles.
Amide derivatives of xanthene dyes such as rhodamine B are useful in a variety of sensing applications due to their colorimetric responses to stimuli such as acidity changes and UV light. The optical properties of these molecules can be influenced by intermolecular associations into dimeric structures, but the exact impact can be hard to predict. We have designed a covalently linked intramolecular dimer of the dye rhodamine B utilizing p-phenylene diamine to link the two dyes via amide bonds. The doubly closed spirolactam version of this dimer, RSL2, is isolated as a colorless solid. Under acidic conditions or UV exposure, RSL2 solutions develop a pink color that is expected for the ring-opened form of the molecule. However, NMR and single crystal diffraction data show that the equilibrium still prefers the closed dimer state. Interestingly, the emission profile of RSL2 shows solvatochromic blue fluorescence. Control studies of model compounds with similar structural motifs do not display similar blue fluorescence, indicating that this optical behavior is unique to the dimeric form. This behavior may lend itself to applications of such xanthene dimers to more sophisticated sensors beyond those with traditional binary on/off fluorescence profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.