Cancer immunotherapies are increasingly effective in the clinic, especially immune checkpoint blockade delivered to patients who have T cell–infiltrated tumors. Agonistic CD40 mAb promotes stromal degradation and, in combination with chemotherapy, drives T cell infiltration and de novo responses against tumors, rendering resistant tumors susceptible to current immunotherapies. Partnering anti-CD40 with different treatments is an attractive approach for the next phase of cancer immunotherapies, with a number of clinical trials using anti-CD40 combinations ongoing, but the optimal therapeutic regimens with anti-CD40 are not well understood. Pancreatic ductal adenocarcinoma (PDA) is classically resistant to immunotherapy and lacks baseline T cell infiltration. In this study, we used a tumor cell line derived from a genetically engineered mouse model of PDA to investigate alterations in the sequence of anti-CD40 and chemotherapy as an approach to enhance pharmacological delivery of chemotherapy. Unexpectedly, despite our previous studies showing anti-CD40 treatment after chemotherapy is safe in both mice and patients with PDA, we report in this article that anti-CD40 administration <3 d in advance of chemotherapy is lethal in more than half of treated C57BL/6 mice. Anti-CD40 treatment 2 or 3 d before chemotherapy resulted in significantly increased populations of both activated myeloid cells and macrophages and lethal hepatotoxicity. Liver damage was fully abrogated when macrophage activation was blocked using anti–CSF-1R mAb. These studies highlight the dual nature of CD40 in activating both macrophages and T cell responses, and the need for preclinical investigation of optimal anti-CD40 treatment regimens for safe design of clinical trials.
Myxoid liposarcoma is a malignant soft tissue sarcoma characterized by a pathognomonic t(12;16)(q13;p11) translocation that produces a fusion oncoprotein, FUS-CHOP. This cancer is remarkably sensitive to radiotherapy and exhibits a unique pattern of extrapulmonary metastasis. Here, we report the generation and characterization of a spatially and temporally restricted mouse model of sarcoma driven by FUS-CHOP. Using different Cre drivers in the adipocyte lineage, we initiated in vivo tumorigenesis by expressing FUS-CHOP in Prrx1+ mesenchymal progenitor cells. In contrast, expression of FUS-CHOP in more differentiated cells does not form tumors in vivo, and early expression of the oncoprotein during embryogenesis is lethal. We also employ in vivo electroporation and CRISPR technology to rapidly generate spatially and temporally restricted mouse models of high-grade FUS-CHOP-driven sarcomas for preclinical studies.
Novel oral anticoagulant (NOAC) medications have revolutionized hematology and cardiology. Recently, NOACs have demonstrated additional promise in dermatology. Specifically, rivaroxaban, a direct factor Xa inhibitor NOAC, has been shown to be successful in the treatment of livedoid vasculopathy. Herein, we describe a patient with systemic lupus erythematosus who presented with painful cutaneous vasculopathy, demonstrated on biopsy with occlusive microvascular fibrin thrombi without evidence of concurrent vasculitis. Interestingly, imaging and laboratory studies did not show evidence of hypercoagulability, arterial disease, or embolic disease. The patient's vasculopathy and pain progressed despite antiplatelet therapy, often considered first-line in cases of microvascular occlusive disease. However, with rivaroxaban therapy, the patient experienced complete regression of her painful lesions, thereby supporting a further role for NOACs in cutaneous vasculopathy treatment.
Chromosomal translocations generate oncogenic fusion proteins in approximately one-third of sarcomas, but how these proteins promote tumorigenesis is not well understood. Interestingly, some translocation-driven cancers exhibit dramatic clinical responses to therapy, such as radiotherapy, although the precise mechanism has not been elucidated. Here we reveal a molecular mechanism by which the fusion oncoprotein FUS-CHOP promotes tumor maintenance that also explains the remarkable sensitivity of myxoid liposarcomas to radiation therapy. FUS-CHOP interacted with chromatin remodeling complexes to regulate sarcoma cell proliferation. One of these chromatin remodelers, SNF2H, colocalized with FUS-CHOP genome-wide at active enhancers. Following ionizing radiation, DNA damage response kinases phosphorylated the prion-like domain of FUS-CHOP to impede these protein–protein interactions, which are required for transformation. Therefore, the DNA damage response after irradiation disrupted oncogenic targeting of chromatin remodelers required for FUS-CHOP–driven sarcomagenesis. This mechanism of disruption links phosphorylation of the prion-like domain of an oncogenic fusion protein to DNA damage after ionizing radiation and reveals that a dependence on oncogenic chromatin remodeling underlies sensitivity to radiation therapy in myxoid liposarcoma. Significance: Prion-like domains, which are frequently translocated in cancers as oncogenic fusion proteins that drive global epigenetic changes, confer sensitivity to radiation via disruption of oncogenic interactions.
Chromosomal translocations generate oncogenic fusion proteins in approximately one-third of sarcomas, but how these proteins promote tumorigenesis and the effect of cancer therapies on their function are not well understood. Here, we reveal a molecular mechanism by which the fusion oncoprotein FUS-CHOP promotes tumor maintenance that also explains the remarkable radiation sensitivity of myxoid liposarcomas. We identified novel interactions between FUS-CHOP and chromatin remodeling complexes that regulate sarcoma cell proliferation. One of these chromatin remodelers, SNF2H, co-localizes with FUS-CHOP genome-wide at active enhancers. Following ionizing radiation, DNA damage response kinases phosphorylate the prionlike domain of FUS-CHOP to impede these protein-protein interactions, which are required for transformation. Therefore, the DNA damage response after irradiation disrupts oncogenic targeting of chromatin remodelers required for FUS-CHOP-driven sarcomagenesis. Significance:Prion-like domains translocated in cancer have been shown to drive global epigenetic changes that are oncogenic. However, some translocation-driven cancers exhibit dramatic clinical responses to therapy, though the mechanism for these responses are not well-understood. Here we show that ionizing radiation can disrupt oncogenic interactions between a fusion oncoprotein and a chromatin remodeling complex, ISWI. This mechanism of disruption links phosphorylation of the prion-like domain in an oncogenic fusion protein to DNA damage after ionizing radiation and reveals that a dependence on oncogenic chromatin remodeling underlies sensitivity to radiation therapy in myxoid liposarcoma.(awards R35 CA197616 to DGK, F30 CA206424 to MC) and the T32 GM007171 MSTP training grant (Duke University).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.