The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33 -0.4 arcsec spatial resolution, two-second temporal resolution, and 1 km s −1 velocity resolution over a field-of-view of up to 175 arcsec × 175 arcsec. . IRIS is sensitive to emission from plasma at temperatures between 5000 K and 10 MK and will advance our understanding of the flow of mass and energy through an interface region, formed by the chromosphere and transition region, between the photosphere and corona. This highly structured and dynamic region not only acts as the conduit of all mass and energy feeding into the corona and solar wind, it also requires an order of magnitude more energy to heat than the corona and solar wind combined. The IRIS investigation includes a strong numerical modeling component based on advanced radiative-MHD codes to facilitate interpretation of observations of this complex region. Approximately eight Gbytes of data (after compression) are acquired by B. De Pontieu (B) ·Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA
Abstract. Advances in microbolometer detectors have led to the development of infrared cameras that operate without active temperature stabilization. The response of these cameras varies with the temperature of the camera's focal plane array (FPA). This paper describes a method for stabilizing the camera's response through software processing. This stabilization is based on the difference between the camera's response at a measured temperature and at a reference temperature. This paper presents the mathematical basis for such a correction and demonstrates the resulting accuracy when applied to a commercially available longwave infrared camera. The stabilized camera was then radiometrically calibrated so that the digital response from the camera could be related to the radiance or temperature of objects in the scene. For FPA temperature deviations within AE7.2°C changing by 0.5°C∕ min, this method produced a camera calibration with spatial-temporal rms variability of 0.21°C, yielding a total calibration uncertainty of 0.38°C limited primarily by the 0.32°C uncertainty in the blackbody source emissivity and temperature.
An imaging Stokes-vector polarimeter using liquid crystal variable retarders (LCVRs) has been built and calibrated. Operating in five bands from 450 to 700 nm, the polarimeter can be changed quickly between narrow (12 degrees ) and wide (approximately 160 degrees) fields of view. The instrument is designed for studying the effects of differing sky polarization upon the measured polarization of ground-based objects. LCVRs exhibit variations in retardance with ray incidence angle and ray position in the aperture. Therefore LCVR-based Stokes polarimeters exhibit unique calibration challenges not found in other systems. Careful design and calibration of the instrument has achieved errors within +/-1.5%. Clear-sky measurements agree well with previously published data and cloudy data provide opportunities to explore spatial and spectral variations in sky polarization.
An uncooled microbolometer-array thermal infrared camera has been incorporated into a remote sensing system for radiometric sky imaging. The radiometric calibration is validated and improved through direct comparison with spectrally integrated data from the Atmospheric Emitted Radiance Interferometer (AERI). With the improved calibration, the Infrared Cloud Imager (ICI) system routinely obtains sky images with radiometric uncertainty less than 0.5 W/(m(2 )sr) for extended deployments in challenging field environments. We demonstrate the infrared cloud imaging technique with still and time-lapse imagery of clear and cloudy skies, including stratus, cirrus, and wave clouds.
Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.