A critical component for all high-power laser systems that is particularly susceptible to laser damage is the antireflective coating, which maximizes energy transmission and minimizes scattered and stray light. We demonstrate the ability to generate substrate-engraved nanostructured surfaces (NS) for scalable and designable antireflective (AR) coatings that are monolithic to the substrate and can handle peak power levels comparable to the bulk material. Experimentally measured reflectance from these fabricated structures has validated our effective index theory-based transmission matrix model, demonstrating the designability of the AR properties. Upon exposure to sufficiently high fluences, a new mode of damage, nanostructured surface damage, has been observed and is likely the result of thermally driven material reflow accompanied by plasma initiation on the nanostructured surface. At 1053 nm, nanostructured surface damage onsets at 39 J / c m 2 with sample cleaning and 74 J / c m 2 after laser conditioning—very close to the reference substrate at 81 J / c m 2 . At 351 nm we show damage onset of 30 J / c m 2 , with reference substrate material damage onset of 47 J / c m 2 . Therefore, damage is close to the bulk material and represents an improvement with respect to other methods. The nanostructured surfaces were found to be mechanically durable and able to withstand cleaning procedures with sonication. Under normal incidence mechanical testing with a 200 µm radius indenter tip, the AR performance of these nanostructured surfaces was minimally impacted at pressures orders of magnitude higher than an average fingerprint pressure—indicating that incidental handling contact will not affect NS structures. Mechanical damage is attributed to plastic compression, not fracturing of the NS features. We demonstrate for the first time, to the best of our knowledge, that NS AR coatings, despite being rich in etched surface features, can tolerate laser fluences comparable to unprocessed optical surfaces. Furthermore, laser-damage features of NS indicate a unique non-growing failure mode whereby following absorption the featureless damage site does not precipitate future damage growth, reducing considerably the burdens for managing optics processing in high-power laser systems.
Gold nanoparticles are important constituents in plasmonic arrays, lending themselves to electronic, optical, biomedical, sensing, and catalytic applications, among numerous others. Process variables that must be controlled when engineering plasmonic nanoparticle ensembles include nanoparticle size, shape, and spatial distribution on surfaces. The challenge in generating arrays of nanoparticles with control over these three parameters increases dramatically as spatial requirements for uniformity extend to larger processing areas. We present a procedure that exploits thermally driven solid-state diffusional dewetting to yield considerable flexibility in generating ensembles of gold nanoparticles. Such submelting dewetting introduces fine control over particle spatial features that are currently difficult to achieve through conventional methods of generating nanoparticle arrays. Because of the simplicity of the process and its areascalability, solid-state diffusional dewetting is shown here to be a method that could be easily scaled up to apply to large-area plasmonic fabrication processes.
A key challenge for metasurface research is locally controlling at will the nanoscale geometric features on meter-scale apertures. Such a technology is expected to enable large aperture meta-optics and revolutionize fields such as long-range imaging, lasers, laser detection and ranging (LADAR), and optical communications. Furthermore, these applications are often more sensitive to light-induced and environmental degradation, which constrains the possible materials and fabrication process. Here, we present a relatively simple and scalable method to fabricate a substrate-engraved metasurface with locally printed index determined by induced illumination, which, therefore, addresses both the challenges of scalability and durability. In this process, a thin metal film is deposited onto a substrate and transformed into a mask via local laser-induced dewetting into nanoparticles. The substrate is then dry-etched through this mask, and selective mask removal finally reveals the metasurface. We show that masking by the local nanoparticle distribution, and, therefore, the local index, is dependent on the local light-induced dewetting temperature. We demonstrate printing of a free-form pattern engraved into a fused silica glass substrate using a laser raster scan. Large-scale spatially controlled engraving of metasurfaces has implications on other technological fields beyond optics, such as surface fluidics, acoustics, and thermomechanics.
Loose abrasive grinding was performed on a wide range of optical workpiece materials [single crystals of Al 2 O 3 (sapphire), SiC, Y 3 Al 5 O 12 (YAG), CaF 2 , and LiB 3 O 5 (LBO); a SiO 2 -Al 2 O 3 -P 2 O 5 -Li 2 O glass-ceramic (Zerodur); and glasses of SiO 2 ∶TiO 2 (ULE), SiO 2 (fused silica), and P 2 O 5 -Al 2 O 3 -K 2 O-BaO (phosphate)]. Using the magneto rheological finishing (MRF) taper wedge technique (where a wedge was polished on each of the ground workpieces and the resulting samples were appropriately chemically etched), the subsurface mechanical damage (SSD) characteristics were measured. The SSD depth for most of the workpiece materials was found to scale as E 1 1∕2 ∕H 1 , where E 1 is the elastic modulus and H 1 is the hardness of the workpiece. This material scaling is the same as that for the growth of lateral cracks, suggesting that lateral cracks are a dominant source for SSD rather than radial/median cracks, as previously proposed. Utilizing the SSD depth data from both this study and others, semiempirical relationships have been formulated, which allows for estimating the SSD depth as a function of workpiece material and important grinding parameters (such as abrasive size and applied pressure).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.