SummaryThe mitochondrial membrane potential (Δψm) is a major determinant and indicator of cell fate, but it is not possible to assess small changes in Δψm within cells or in vivo. To overcome this, we developed an approach that utilizes two mitochondria-targeted probes each containing a triphenylphosphonium (TPP) lipophilic cation that drives their accumulation in response to Δψm and the plasma membrane potential (Δψp). One probe contains an azido moiety and the other a cyclooctyne, which react together in a concentration-dependent manner by “click” chemistry to form MitoClick. As the mitochondrial accumulation of both probes depends exponentially on Δψm and Δψp, the rate of MitoClick formation is exquisitely sensitive to small changes in these potentials. MitoClick accumulation can then be quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This approach enables assessment of subtle changes in membrane potentials within cells and in the mouse heart in vivo.
Graphene and related 2D materials offer an ideal platform for next generation disruptive technologies and in particular the potential to produce printed electronic devices with low cost and high throughput....
A prodrug strategy for the release of the gasotransmitter carbon monoxide (CO) at physiological pH, based upon 3a-bromo-norborn-2-en-7-one Diels–Alder cycloadducts has been developed.
Ketamine is primarily metabolized to norketamine by hepatic CYP2B6 and CYP3A4-mediated N-demethylation. However, the relative contribution from each enzyme remains controversial. The CYP2B6*6 allele is associated with reduced enzyme expression and activity that may lead to interindividual variability in ketamine metabolism. We examined the N-demethylation of individual ketamine enantiomers using human liver microsomes (HLMs) genotyped for the CYP2B6*6 allele, insect cell-expressed recombinant CYP2B6 and CYP3A4 enzymes, and COS-1 cell-expressed recombinant CYP2B6.1 and CYP2B6.6 protein variant. Effects of CYP-selective inhibitors on norketamine formation were also determined in HLMs. The two-enzyme Michaelis-Menten model best fitted the HLM kinetic data. The Michaelis-Menten constants (K m ) for the highaffinity enzyme and the low-affinity enzyme were similar to those for the expressed CYP2B6 and CYP3A4, respectively. The intrinsic clearance for both ketamine enantiomers by the high-affinity enzyme in HLMs with CYP2B6*1/*1 genotype were at least 2-fold and 6-fold higher, respectively, than those for CYP2B6*1/*6 genotype and CYP2B6*6/*6 genotype. The V max and K m values for CYP2B6.1 were approximately 160 and 70% of those for CYP2B6.6, respectively. N,N9N9-triethylenethiophosphoramide (thioTEPA) (CYP2B6 inhibitor, 25 mM) and the monoclonal antibody against CYP2B6 but not troleandomycin (CYP3A4 inhibitor, 25 mM) or the monoclonal antibody against CYP3A4 inhibited ketamine N-demethylation at clinically relevant concentrations. The degree of inhibition was significantly reduced in HLMs with the CYP2B6*6 allele (genedose P < 0.05). These results indicate a major role of CYP2B6 in ketamine N-demethylation in vitro and a significant impact of the CYP2B6*6 allele on enzyme-ketamine binding and catalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.