Objective and Impact Statement. There is a need to develop platforms delineating inflammatory biology of the distal human lung. We describe a platform technology approach to detect in situ enzyme activity and observe drug inhibition in the distal human lung using a combination of matrix metalloproteinase (MMP) optical reporters, fibered confocal fluorescence microscopy (FCFM), and a bespoke delivery device. Introduction. The development of new therapeutic agents is hindered by the lack of in vivo in situ experimental methodologies that can rapidly evaluate the biological activity or drug-target engagement in patients. Methods. We optimised a novel highly quenched optical molecular reporter of enzyme activity (FIB One) and developed a translational pathway for in-human assessment. Results. We demonstrate the specificity for matrix metalloproteases (MMPs) 2, 9, and 13 and probe dequenching within physiological levels of MMPs and feasibility of imaging within whole lung models in preclinical settings. Subsequently, in a first-in-human exploratory experimental medicine study of patients with fibroproliferative lung disease, we demonstrate, through FCFM, the MMP activity in the alveolar space measured through FIB One fluorescence increase (with pharmacological inhibition). Conclusion. This translational in situ approach enables a new methodology to demonstrate active drug target effects of the distal lung and consequently may inform therapeutic drug development pathways.
Clinical approaches for quantification of atrial fibrosis are currently based on digital image processing of magnetic resonance images. Here, we introduce and evaluate a comprehensive framework based on convolutional neural networks for quantifying atrial fibrosis from images acquired with catheterized fiber-optics confocal microscopy (FCM). FCM images in three regions of the atria were acquired in the beating heart in situ in an established transgenic animal model of atrial fibrosis. Fibrosis in the imaged regions was histologically assessed in excised tissue. FCM images and their corresponding histologically-assessed fibrosis levels were used for training of a convolutional neural network. We evaluated the utility and performance of the convolutional neural networks by varying parameters including image dimension and training batch size. In general, we observed that the root-mean square error (RMSE) of the predicted fibrosis was decreased with increasing image dimension. We achieved a RMSE of 2.6% and a Pearson correlation coefficient of 0.953 when applying a network trained on images with a dimension of 400 × 400 pixels and a batch size of 128 to our test image set. The findings indicate feasibility of our approach for fibrosis quantification from images acquired with catheterized FCM using convolutional neural networks. We suggest that the developed framework will facilitate translation of catheterized FCM into a clinical approach that complements current approaches for quantification of atrial fibrosis.
Light-scattering spectroscopy (LSS) is an established optical approach for characterization of biological tissues. Here, we investigated the capabilities of LSS and convolutional neural networks (CNNs) to quantitatively characterize the composition and arrangement of cardiac tissues. We assembled tissue constructs from fixed myocardium and the aortic wall with a thickness similar to that of the atrial free wall. The aortic sections represented fibrotic tissue. Depth, volume fraction, and arrangement of these fibrotic insets were varied. We gathered spectra with wavelengths from 500–1100 nm from the constructs at multiple locations relative to a light source. We used single and combinations of two spectra for training of CNNs. With independently measured spectra, we assessed the accuracy of the CNNs for the classification of tissue constructs from single spectra and combined spectra. Combined spectra, including the spectra from fibers distal from the illumination fiber, typically yielded the highest accuracy. The maximal classification accuracy of the depth detection, volume fraction, and permutated arrangements was (mean ± standard deviation (stddev)) 88.97 ± 2.49%, 76.33 ± 1.51%, and 84.25 ± 1.88%, respectively. Our studies demonstrate the reliability of quantitative characterization of tissue composition and arrangements using a combination of LSS and CNNs. The potential clinical applications of the developed approach include intraoperative quantification and mapping of atrial fibrosis, as well as the assessment of ablation lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.