Avian bipedalism is best studied in derived walking/running specialists. Here, we use kinematics and center of mass (CoM) mechanical energy patterns to investigate gait transitions of lapwings-migratory birds that forage on the ground, and therefore may need a trade-off between the functional demands of terrestrial locomotion and long distance flights. The animals ran on a treadmill while high-speed X-ray videos were recorded within the sustainable speed range. Instantaneous CoM mechanics were computed from integrating kinematics and body segment properties. Lapwings exhibit similar locomotor characteristics to specialized walking/running birds, but have less distinct gaits. At slow speeds no clear separation between vaulting (i.e., walking) and bouncing (i.e., running) energy patterns exists. Mechanical energy recovery of non-bouncing gaits correlates poorly with speed and suggests inefficient use of the inverted pendulum mechanism. Speed ranges of gaits overlap considerably, especially those of grounded running, a gait with CoM mechanics indicative of running but without an aerial phase, and aerial phase running, with no preferential gait at most speeds. Compliant limb morphology and grounded running in birds can be regarded as an evolutionary constraint, but lapwings effectively make use of advantages offered by this gait for a great fraction of their speed range. Thus, effective usage of grounded running during terrestrial locomotion is suggested generally to be a part of striding avian bipedalism-even in species not specialized in walking/running locomotion.
This systematic review and meta-analysis of ACL and knee injury prevention program studies found a statistically significant reduction in injury risk for knee injuries but did not find a statistically significant reduction of ACL injuries.
Many diagnostic features of femoral condyle OCD lesions can be reliably classified on plain radiographs, supporting their future testing in multifactorial classification systems and multicenter research to develop prognostic algorithms. Other radiographic features should be excluded, however, because of poor reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.