Genome wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC) with another two loci being close to genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the United Kingdom. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. Follow-up genotyping was carried out in 18,174 cases and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 previously near genome-wide significance and identified three novel loci associated with risk; two loci associated with all EOC subtypes, at 8q21 (rs11782652, P=5.5×10-9) and 10p12 (rs1243180; P=1.8×10-8), and another locus specific to the serous subtype at 17q12 (rs757210; P=8.1×10-10). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility that implicates CHMP4C in the pathogenesis of ovarian cancer.
SUMMARY We report the preclinical evaluation of PF-06463922, a potent and brain penetrant ALK/ROS1 inhibitor. Compared to other clinically available ALK inhibitors, PF-06463922 displayed superior potency against all known clinically acquired ALK mutations, including the highly resistant G1202R mutant. Furthermore, PF-06463922 treatment led to regression of EML4-ALK driven brain metastases, leading to prolonged mouse survival, in a superior manner. Finally, PF-06463922 demonstrated high selectivity and safety margins in a variety of preclinical studies. These results suggest that PF-06463922 will be highly effective for the treatment of patients with ALK-driven lung cancers, including those who relapsed on clinically available ALK inhibitors due to secondary ALK kinase domain mutations and/or due to the failed control of brain metastases.
For many cancers, there is a real need for more effective therapies. Although many drugs show promising results in vitro, most fail to translate into an in vivo model system, and only B5% show anti-tumor activity in clinical trials. It remains a significant challenge to accurately replicate in vitro the complex in vivo microenvironment in which cancers thrive, but this will be key to increasing the success of translating novel therapies into clinical practice. Three-dimensional (3D) cell culture models may better mimic primary tumors in vivo than traditional two-dimensional (2D) cultures. Therefore, we established and characterized 3D in vitro models of 31 epithelial ovarian cancer (EOC) cell lines, compared their biological and molecular features with 2D cultures and primary tumors, and tested their efficacy as models for evaluating chemoresponse. When cultured in 3D using polyhydroxoethylamethacrylate-coated plastics, EOC lines formed multicellular aggregates that could be classified as 'large dense', 'large loose', and 'small', based on size, light permeability, and proportion of cells incorporated into the complex structures. Features of histological differentiation characteristic of primary tumors that were not present in 2D cultures were restored in 3D. For many cell lines, the transition from a 2D to 3D microenvironment induced changes in the expression of several biomarkers relevant to disease. Generally, EOC cell lines proliferated more slowly and were more chemoresistant in 3D compared with 2D culture. In summary, 3D models of EOCs better reflect the histological, biological, and molecular features of primary tumors than the same cells cultured using traditional 2D techniques; 3D in vitro models also exhibit different sensitivities to chemotherapeutic agents compared with 2D models, which may have a significant impact on the success of drug testing pipelines for EOC. These findings could also impact in vitro modeling approaches and drug development strategies for other solid tumor types. The success rate of anti-cancer therapies translating from in vitro culture systems into the clinic is about 5%. 1 The vast majority of drugs that show promising results in vitro fail to replicate in an in vivo model system and even fewer make it into clinical trials. Nonetheless testing drugs in cell culture models is a vital part of any drug development process. It is likely that a major contributing factor to the low rates of in vivo translation of new therapeutic agents is the widespread use of two-dimensional (2D) monolayer culture systems used for in vitro drug discovery and development. 2D cultures fail to recapitulate the gradients of drugs, nutrients, gases, and waste products that characterize tumors in vivo; all are important factors influencing response to therapy. 2,3 Moreover, many of the signaling pathways involved in chemoresponsiveness are differentially activated in monolayer cultures, and as a result, 2D cultures are often more sensitive to drug therapies yielding many false-positive results in 2D dr...
Transformation-associated recombination (TAR) protocol allowing the selective isolation of full-length genes complete with their distal enhancer regions and entire genomic loci with sizes up to 250 kb from complex genomes in yeast S. cerevisiae has been developed more than a decade ago. However, its wide spread usage has been impeded by a low efficiency (0.5–2%) of chromosomal region capture during yeast transformants which in turn requires a time-consuming screen of hundreds of colonies. Here, we demonstrate that pre-treatment of genomic DNA with CRISPR-Cas9 nucleases to generate double-strand breaks near the targeted genomic region results in a dramatic increase in the fraction of gene-positive colonies (up to 32%). As only a dozen or less yeast transformants need to be screened to obtain a clone with the desired chromosomal region, extensive experience with yeast is no longer required. A TAR-CRISPR protocol may help to create a bank of human genes, each represented by a genomic copy containing its native regulatory elements, that would lead to a significant advance in functional, structural and comparative genomics, in diagnostics, gene replacement, generation of animal models for human diseases and has a potential for gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.