Patient-specific cardiovascular simulation has become a paradigm in cardiovascular research and is emerging as a powerful tool in basic, translational and clinical research. In this paper we discuss the recent development of a fully open-source SimVascular software package, which provides a complete pipeline from medical image data segmentation to patient-specific blood flow simulation and analysis. This package serves as a research tool for cardiovascular modeling and simulation, and has contributed to numerous advances in personalized medicine, surgical planning and medical device design. The SimVascular software has recently been refactored and expanded to enhance functionality, usability, efficiency and accuracy of image-based patient-specific modeling tools. Moreover, SimVascular previously required several licensed components that hindered new user adoption and code management and our recent developments have replaced these commercial components to create a fully open source pipeline. These developments foster advances in cardiovascular modeling research, increased collaboration, standardization of methods, and a growing developer community.
Allometric scaling laws relate structure or function between species of vastly different sizes. They have rarely been derived for hemodynamic parameters known to affect the cardiovascular system, e.g., wall shear stress (WSS). This work describes noninvasive methods to quantify and determine a scaling law for WSS. Geometry and blood flow velocities in the infrarenal aorta of mice and rats under isoflurane anesthesia were quantified using two-dimensional magnetic resonance angiography and phase-contrast magnetic resonance imaging at 4.7 tesla. Three-dimensional models constructed from anatomic data were discretized and used for computational fluid dynamic simulations using phase-contrast velocity imaging data as inlet boundary conditions. WSS was calculated along the infrarenal aorta and compared between species to formulate an allometric equation for WSS. Mean WSS along the infrarenal aorta was significantly greater in mice and rats compared with humans (87.6, 70.5, and 4.8 dyn/cm(2), P < 0.01), and a scaling exponent of -0.38 (R(2) = 0.92) was determined. Manipulation of the murine genome has made small animal models standard surrogates for better understanding the healthy and diseased human cardiovascular system. It has therefore become increasingly important to understand how results scale from mouse to human. This noninvasive methodology provides the opportunity to serially quantify changes in WSS during disease progression and/or therapeutic intervention.
. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am J Physiol Heart Circ Physiol 291: H668 -H676, 2006. First published April 7, 2006 doi:10.1152/ajpheart.01301.2005.-Localization of atherosclerotic lesions in the abdominal aorta has been previously correlated to areas of adverse hemodynamic conditions, such as flow recirculation, low mean wall shear stress, and high temporal oscillations in shear. Along with its many systemic benefits, exercise is also proposed to have local benefits in the vasculature via the alteration of these regional flow patterns. In this work, subject-specific models of the human abdominal aorta were constructed from magnetic resonance angiograms of five young, healthy subjects, and computer simulations were performed under resting and exercise (50% increase in resting heart rate) pulsatile flow conditions. Velocity fields and spatial variations in mean wall shear stress (WSS) and oscillatory shear index (OSI) are presented. When averaged over all subjects, WSS increased from 4.8 Ϯ 0.6 to 31.6 Ϯ 5.7 dyn/cm 2 and OSI decreased from 0.22 Ϯ 0.03 to 0.03 Ϯ 0.02 in the infrarenal aorta between rest and exercise. WSS significantly increased, whereas OSI decreased between rest and exercise at the supraceliac, infrarenal, and suprabifurcation levels, and significant differences in WSS were found between anterior and posterior sections. These results support the hypothesis that exercise provides localized benefits to the cardiovascular system through acute mechanical stimuli that trigger longer-term biological processes leading to protection against the development or progression of atherosclerosis. atherosclerosis; shear stress; magnetic resonance imaging; finite element analysis ADVERSE HEMODYNAMIC conditions, such as complex, recirculating flow, low mean wall shear stress, high spatial gradients in shear stress, and high particle residence times, are hypothesized to contribute to the localization of atherosclerotic plaque throughout the vasculature. In the abdominal aorta, a correlation between atherosclerosis and areas of low wall shear stress has been elucidated with prior autopsy (2,7,27,31,39) and experimental studies (5,16,19,20,22,32). Specifically, Cornhill et al. (2) observed a high probability of occurrence of sudanophilic lesions along the posterior and lateral walls of autopsy specimens obtained from young, healthy males, whereas Roberts et al. (27) and Glagov et al. (21), and in vitro cell culture work has shown that oscillating shear can induce an inflammatory response, including an increase in reactive oxygen species (3,9,29).Conversely, elevated blood flow associated with exercise has been hypothesized to result in hemodynamic conditions that inhibit atherosclerosis, such as unidirectional laminar flow, increased wall shear stress, and enhanced transport of cholesterol from the vessel wall (11,18,32,33). It has been shown in vitro that the vascular endothelium can sense and resp...
first draft of paper, designed experiments performed statistical analyses, performed bioinformatics analyses, performed data visualisation. M.T. wrote first draft of paper, designed experiments, generated tools & reagents, performed statistical analyses, performed bioinformatics analyses, performed data visualisation. S.M.G.E. wrote first draft of paper, generated tools & reagents, performed bioinformatics analyses, performed data visualisation. A.G.D. wrote first draft of paper, designed experiments, generated tools & reagents, performed bioinformatics analyses. M.D. generated tools & reagents. S.D. generated tools & reagents. L.Y.L. generated tools & reagents. S.S. generated tools & reagents. H.Z. generated tools & reagents. K.Z. generated tools & reagents, performed bioinformatics analyses. T.O.Y. generated tools & reagents, performed bioinformatics analyses. J.M.C. generated tools & reagents. A.B. generated tools & reagents. C.M.L. generated tools & reagents. I.U. generated tools & reagents. B.L. generated tools & reagents. W.Z. generated tools & reagents. A.D.E. generated tools & reagents, supervised research. NMW performed bioinformatics analyses, performed data visualisation. J.A.W. performed bioinformatics analyses. M.K.H.Z. performed bioinformatics analyses. C.V.A. performed bioinformatics analyses. C.P. performed data visualisation. J.T.S. supervised research. J.M.S. supervised research. D.A. supervised research. Y.G. supervised research. K.E. wrote first draft of paper, supervised research. D.C.W. designed experiments, supervised research. Q.D.M. wrote first draft of paper, designed experiments, generated tools & reagents, supervised research. P.V.L. wrote first draft of paper, designed experiments, supervised research. P.C.B. wrote first draft of paper, designed experiments, supervised research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.