On the Greenland Ice Sheet (GrIS), ice flow due to deformation and sliding across the bed delivers ice to lower-elevation marginal regions where it can melt. We measured the two mechanisms of motion using a three-dimensional array of 212 tilt sensors installed within a network of boreholes drilled to the bed in the ablation zone of GrIS. Unexpectedly, sliding completely dominates ice motion all winter, despite a hard bedrock substrate and no concurrent surface meltwater forcing. Modeling constrained by detailed tilt observations made along the basal interface suggests that the high sliding is due to a slippery bed, where sparsely spaced bedrock bumps provide the limited resistance to sliding. The conditions at the site are characterized as typical of ice sheet margins; thus, most ice flow near the margins of GrIS is mainly from sliding, and marginal ice fluxes are near their theoretical maximum for observed surface speeds.
Abstract. On glaciers and ice sheets, identifying the relationship between velocity and traction is critical to constrain the bed physics that controls ice flow. Yet in Greenland, these relationships remain unquantified. We determine the spatial relationship between velocity and traction in all eight major drainage catchments of Greenland. The basal traction is estimated using three different methods over large grid cells to minimize interpretation biases associated with unconstrained rheologic parameters used in numerical inversions. We find the relationships are consistent with our current understanding of basal physics in each catchment. We identify catchments that predominantly show Mohr–Coulomb-like behavior typical of deforming beds or significant cavitation, as well as catchments that predominantly show rate-strengthening behavior typical of Weertman-type hard-bed physics. Overall, the traction relationships suggest that the flow field and surface geometry of the grounded regions in Greenland is mainly dictated by Weertman-type hard-bed physics up to velocities of approximately 450 m yr−1, except within the Northeast Greenland Ice Stream and areas near floatation. Depending on the catchment, behavior of the fastest-flowing ice (∼ 1000 m yr−1) directly inland from marine-terminating outlets exhibits Weertman-type rate strengthening, Mohr–Coulomb-like behavior, or is not confidently resolved given our methodology. Given the complex basal boundary across Greenland, the relationships are captured reasonably well by simple traction laws which provide a parameterization that can be used to model ice dynamics at large scales. The results and analysis serve as a first constraint on the physics of basal motion over the grounded regions of Greenland and provide unique insight into future dynamics and vulnerabilities in a warming climate.
During the last decade, the number of available satellite observations has increased significantly, allowing for far more frequent measurements of the glacier speed. Appropriate methods of post-processing need to be developed to efficiently deal with the large volumes of data generated and relatively large intrinsic errors associated with the measurements. Here, we process and combine together measurements of ice velocity of Russell Gletscher in Greenland from three satellites—Sentinel-1, Sentinel-2, and Landsat-8, creating a multi-year velocity database with high temporal and spatial resolution. We then investigate post-processing methodologies with the aim of generating corrected, ordered, and simplified time series. We tested rolling mean and median, cubic spline regression, and linear non-parametric local regression (LOWESS) smoothing algorithms to reduce data noise, evaluated the results against ground-based GPS in one location, and compared the results between two locations with different characteristics. We found that LOWESS provides the best solution for noisy measurements that are unevenly distributed in time. Using this methodology with these sensors, we can robustly derive time series with temporal resolution of 2–3 weeks and improve the accuracy on the ice velocity to about 10 m/yr, or a factor of three compared to the initial measurements. The presented methodology could be applied to the entire Greenland ice sheet with an aim of reconstructing comprehensive sub-seasonal ice flow dynamics and mass balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.