A significant technical barrier (i.e., facile oxidative degradation) that has prevented the preparation of large acenes has now been breached. Using a combination of experimentally and theoretically derived substituent effects, the design, synthesis, isolation, and characterization of the first persistent nonacene derivative is described. The molecular design strategy includes placement of arylthio (or alkylthio) substituents on the terminal rings of the nonacene skeleton, effectively converting an open-shell singlet diradical into a closed-shell system. These powerful substituent effects appear to be suitable for the synthesis of other persistent, soluble, large acene derivatives required for advanced thin-film organic semiconductor applications.
Substituent effects have been exploited to produce an unusually persistent heptacene derivative. In total, four new heptacene derivatives with varying levels of photooxidative resistance (1 < 2 < 3 < 4) have been synthesized. A combination of p-(t-butyl)thiophenyl substituents at positions 7 and 16 (i.e., arylthio substituents attached to the most reactive ring) and o-dimethylphenyl substituents at positions 5, 9, 14, and 18 (i.e., steric resistance on neighboring rings) make heptacene derivative 4 especially resistant to photooxidation. It persists for weeks as a solid, for 1-2 days in solution if shielded from light, and for several hours in solution when directly exposed to both light and air. Heptacene derivative 4 has been fully characterized. It possesses a small HOMO-LUMO gap of 1.37 eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.