Whereas recent studies suggest that cholesterol plays important role in the regulation of membrane proteins, its effect on the interaction of the cell membrane with the underlying cytoskeleton is not well understood. Here, we investigated this by measuring the forces needed to extract nanotubes (tethers) from the plasma membrane, using atomic force microscopy. The magnitude of these forces provided a direct measure of cell stiffness, cell membrane effective surface viscosity and association with the underlying cytoskeleton. Furthermore, we measured the lateral diffusion constant of a lipid analog DiIC12, using fluorescence recovery after photobleaching, which offers additional information on the organization of the membrane. We found that cholesterol depletion significantly increased the adhesion energy between the membrane and the cytoskeleton and decreased the membrane diffusion constant. An increase in cellular cholesterol to a level higher than that in control cells led to a decrease in the adhesion energy and the membrane surface viscosity. Disassembly of the actin network abrogated all the observed effects, suggesting that cholesterol affects the mechanical properties of a cell through the underlying cytoskeleton. The results of these quantitative studies may help to better understand the biomechanical processes accompanying the development of atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.