Research investigating hydration strategies specialized for women’s soccer players is limited, despite the growth in the sport. The purpose of this study was to determine the effects of fluid balance and electrolyte losses in collegiate women’s soccer players. Eighteen NCAA Division I women’s soccer players were recruited (age: 19.2 ± 1.0 yr; weight: 68.5 ± 9.0 kg, and height: 168.4 ± 6.7 cm; mean ± SD), including: 3 forwards (FW), 7 mid-fielders (MD), 5 defenders (DF), and 3 goalkeepers (GK). Players practiced outdoor during spring off-season training camp for a total 14 practices (WBGT: 18.3 ± 3.1 °C). The main outcome measures included body mass change (BMC), sweat rate, urine and sweat electrolyte concentrations, and fluid intake. Results were analyzed for comparison between low (LOW; 16.2 ± 2.6° C, n = 7) and moderate risk environments for hyperthermia (MOD; 20.5 ± 1.5 °C, n = 7) as well as by field position. The majority (54%) of players were in a hypohydrated state prior to practice. Overall, 26.7% of players had a %BMC greater than 0%, 71.4% of players had a %BMC less than −2%, and 1.9% of players had a %BMC greater than −2% (all MD position). Mean %BMC and sweat rate in all environmental conditions were −0.4 ± 0.4 kg (−0.5 ± 0.6% body mass) and 1.03 ± 0.21 mg·cm−2·min−1, respectively. In the MOD environment, players exhibited a greater sweat rate (1.07 ± 0.22 mg·cm−2·min−1) compared to LOW (0.99 ± 0.22 mg·cm−2·min−1; p = 0.02). By position, DF had a greater total fluid intake and a lower %BMC compared to FW, MD, and GK (all p < 0.001). FW had a greater sweat sodium (Na+) (51.4 ± 9.8 mmol·L−1), whereas GK had the lowest sweat sodium (Na+) (30.9 ± 3.9 mmol·L−1). Hydration strategies should target pre-practice to ensure players are adequately hydrated. Environments deemed to be of moderate risk of hyperthermia significantly elevated the sweat rate but did not influence fluid intake and hydration status compared to low-risk environments. Given the differences in fluid balance and sweat responses, recommendations should be issued relative to soccer position.
This study aimed to describe the physical demands of American football players using novel performance analysis techniques. Heart rate (HR) and accelerometer-based activity levels were observed across two pre-season scrimmages in 23 Division I collegiate football players (age: 19 ± 1 y, height: 1.90 ± 0.06 m, weight: 116.2 ± 19.4 kg). Data were analyzed using a MATLAB program and inter-rater reproducibility assessed using inter-class correlations (ICC). Players were analyzed by side (offense/defense) and position (skill/non-skill). Performance variables assessed in bursts of activity included burst duration, HRmean and HRmax (bpm), and mean activity (vector magnitude units [vmu]). Exercise intensity was categorized as time spent in % HRmax in 5% increments. The burst duration (8.1±3.9 min, ICC = 0.72), HRmean (157 ± 12 bpm, ICC = 0.96) and mean activity (0.30 ± 0.05 vmu, ICC = 0.86) were reproducible. HRmean (p = 0.05) and HRmax (p = 0.001) were greater on defense. Offense spent more time at 65–70% HRmax (p = 0.01), 70–75% HRmax (p = 0.02) while defense spent more time 90–95% HRmax and ≥95% HRmax (p = 0.03). HRmean (p = 0.70) and HRpeak (p = 0.80) were not different between positions across both sides. Skilled players demonstrated greater mean activity (p = 0.02). The sport-specific analysis described HR and activity level in a reproducible manner. Automated methods of assessing HR may be useful in training and game time performance but ultimately provides support to coaching decision making.
Sickle cell trait (SCT) is a risk factor of collapse and sudden death in athletes. We conducted a longitudinal study to determine the hematological responses and hydration status in NCAA Division I American football players with SCT. The study took place over 2 years with 6 SCT and 6 position-matched controls (CON) in year 1; and 4 SCT and 4 CON in year 2. In year 2, three of the four SCT players were recruited and re-enrolled with new position-matched controls (total sample data = 10 SCT and 10 CON). Blood samples were taken at three visits: pre-camp, post-camp, and post-season to examine hemoglobin variants, complete blood counts, and chemistry panel 26. Hydration status was assessed by measuring body weight change, urine specific gravity, and urine and sweat electrolyte concentrations during the pre-season training camp. All SCT players were confirmed to have SCT (HbS = 37.9 ± 2.4%) and had greater red cell distribution width (RDW) compared to CON across all visits. Serum uric acid was higher in SCT (7.3 ± 1.0 mg/dL) compared to CON (6.1 ± 0.6 mg/dL; p = 0.001). Furthermore, serum creatine kinase levels were greater in SCT (1617.0 ± 1034.8 IU/L) at pre-camp compared to CON (1037.4 ± 602.8 IU/L; p = 0.03). SCT players exhibited lower pre- and post-practice urine electrolytes and urine specific gravity (SCT pre: 1.019 ± 0.005 vs. CON pre: 1.026 ± 0.008 p < 0.001; SCT post: 1.020 ± 0.005 vs. CON post: 1.030 ± 0.008 p < 0.01), whereas sweat sodium concentrations were higher in SCT players (55.4 ± 13.6 mmol/L) compared to CON (45.5 ± 10.6 mmol/L; p < 0.001). Given the evidence, greater uric acid and CPK levels in SCT players compared to CON may be an early indicator of altered kidney function and muscle damage, which could be added into NCAA guidelines for surveillance among SCT players. Consistent education and reinforcement of the importance of adequate fluid balance during exercise are critical for both SCT and CON players.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.