Bread wheat is an allohexaploid species originating from two successive and recent rounds of hybridization between three diploid species that were very similar in terms of chromosome number, genome size, TE content, gene content and synteny. As a result, it has long been considered that most of the genes were in three pairs of homoeologous copies. However, these so-called triads represent only one half of wheat genes, while the remaining half belong to homoeologous groups with various number of copies across subgenomes. In this study, we examined and compared the distribution, conservation, function, expression and epigenetic profiles of triads with homoeologous groups having undergone a deletion (dyads) or a duplication (tetrads) in one subgenome. We show that dyads and tetrads are mostly located in distal regions and have lower expression level and breadth than triads. Moreover, they are enriched in functions related to adaptation and more associated with the repressive H3K27me3 modification. Altogether, these results suggest that triads mainly correspond to housekeeping genes and are part of the core genome, while dyads and tetrads belong to the Triticeae dispensable genome. In addition, by comparing the different categories of dyads and tetrads, we hypothesize that, unlike most of the allopolyploid species, subgenome dominance and biased fractionation are absent in hexaploid wheat. Differences observed between the three subgenomes are more likely related to two successive and ongoing waves of post-polyploid diploidization, that had impacted A and B more significantly than D, as a result of the evolutionary history of hexaploid wheat.
Background The sequencing of the wheat (Triticum aestivum) genome has been a methodological challenge for many years owing to its large size (15.5 Gb), repeat content, and hexaploidy. Many initiatives aiming at obtaining a reference genome of cultivar Chinese Spring have been launched in the past years and it was achieved in 2018 as the result of a huge effort to combine short-read sequencing with many other resources. Reference-quality genome assemblies were then produced for other accessions, but the rapid evolution of sequencing technologies offers opportunities to reach high-quality standards at lower cost. Results Here, we report on an optimized procedure based on long reads produced on the Oxford Nanopore Technology PromethION device to assemble the genome of the French bread wheat cultivar Renan. Conclusions We provide the most contiguous chromosome-scale assembly of a bread wheat genome to date. Coupled with an annotation based on RNA-sequencing data, this resource will be valuable for the crop community and will facilitate the rapid selection of agronomically important traits. We also provide a framework to generate high-quality assemblies of complex genomes using ONT.
The sequencing of the wheat (Triticum aestivum) genome has been a methodological challenge for many years due to its large size (15.5 Gb), repeat content, and hexaploidy. Many initiatives aiming at obtaining a reference genome of cultivar Chinese Spring have been launched in the past years and it was achieved in 2018 as the result of a huge effort to combine short-read whole genome sequencing with many other resources. Reference-quality genome assemblies were then produced for other accessions but the rapid evolution of sequencing technologies offers opportunities to reach high-quality standards at lower cost. Here, we report on an optimized procedure based on long-reads produced on the ONT (Oxford Nanopore Technology) PromethION device to assemble the genome of the French bread wheat cultivar Renan. We provide the most contiguous and complete chromosome-scale assembly of a bread wheat genome to date, a resource that will be valuable for the crop community and will facilitate the rapid selection of agronomically important traits. We also provide the methodological standards to generate high-quality assemblies of complex genomes.
Bread wheat (Triticum aestivum L.) is a major crop and its genome is one of the largest ever assembled at reference-quality level. It is 15 Gb, hexaploid, with 85% of transposable elements (TEs). Wheat genetic diversity was mainly focused on genes and little is known about the extent of genomic variability affecting TEs, transposition rate, and the impact of polyploidy. Multiple chromosome-scale assemblies are now available for bread wheat and for its tetraploid and diploid wild relatives. In this study, we computed base pair-resolved, gene-anchored, whole genome alignments of A, B, and D lineages at different ploidy levels in order to estimate the variability that affects the TE space. We used assembled genomes of 13 T. aestivum cultivars (6x=AABBDD), T. durum (4x=AABB), T. dicoccoides (4x=AABB), T. urartu (2x=AA), and Aegilops tauschii (2x=DD). We show that 5 to 34% of the TE fraction is variable, depending on the species divergence. Between 400 and 13,000 novel TE insertions per subgenome were detected. We found lineage-specific insertions for nearly all TE families in di- tetra- and hexaploids. No burst of transposition was observed and polyploidization did not trigger any boost of transposition. This study challenges the prevailing idea of wheat TE dynamics and is more in agreement with an equilibrium model of evolution.
Bread wheat is an allohexaploid species originating from two successive and recent rounds of hybridization between three diploid species that were very similar in terms of chromosome number, genome size, TE content, gene content and synteny. As a result, it has long been considered that most of the genes were in three pairs of homoeologous copies. However, these so-called triads represent only one half of wheat genes, while the remaining half belong to homoeologous groups with various number of copies across subgenomes. In this study, we examined and compared the distribution, conservation, function, expression and epigenetic profiles of triads with homoeologous groups having undergone a deletion (dyads) or a duplication (tetrads) in one subgenome. We show that dyads and tetrads are mostly located in distal regions and have lower expression level and breadth than triads. Moreover, they are enriched in functions related to adaptation and more associated with the repressive H3K27me3 modification. Altogether, these results suggest that triads mainly correspond to housekeeping genes and are part of the core genome, while dyads and tetrads belong to the Triticeae dispensable genome. In addition, by comparing the different categories of dyads and tetrads, we hypothesize that, unlike most of the allopolyploid species, subgenome dominance and biased fractionation are absent in hexaploid wheat. Differences observed between the three subgenomes are more likely related to two successive and ongoing waves of post-polyploid diploidization, that had impacted A and B more significantly than D, as a result of the evolutionary history of hexaploid wheat.Core ideasOnly one half of hexaploid wheat genes are in triads, i.e. in a 1:1:1 ratio across subgenomesTriads are likely part of the core genome; dyads and tetrads belong to the dispensable genomeSubgenome dominance and biased fractionation are absent in hexaploid wheatSubgenome differences are related to two successive waves of post-polyploid diploidization
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.