In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Selective autophagy can be mediated via receptor molecules that link specific cargoes to the autophagosomal membranes decorated by ubiquitin-like microtubule-associated protein light chain 3 (LC3) modifiers. Although several autophagy receptors have been identified, little is known about mechanisms controlling their functions in vivo. In this work, we found that phosphorylation of an autophagy receptor, optineurin, promoted selective autophagy of ubiquitincoated cytosolic Salmonella enterica. The protein kinase TANK binding kinase 1 (TBK1) phosphorylated optineurin on serine-177, enhancing LC3 binding affinity and autophagic clearance of cytosolic Salmonella. Conversely, ubiquitin-or LC3-binding optineurin mutants and silencing of optineurin or TBK1 impaired Salmonella autophagy, resulting in increased intracellular bacterial proliferation. We propose that phosphorylation of autophagy receptors might be a general mechanism for regulation of cargo-selective autophagy.Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved catabolic process by which cells deliver bulk cytosolic components for degradation to the lysosome (1-4). Selectivity in cargo targeting is mediated via autophagy receptors that simultaneously bind cargoes and autophagy modifiers, autophagy-related protein 8 (ATG8)/ microtubule-associated protein light chain 3 (LC3)/γ-aminobutyric acid receptor-associated protein (GABARAP) proteins, which are conjugated to the autophagosomal membranes (5, 6). The regulatory mechanisms controlling the spatiotemporal dynamics of the autophagy receptor-target interaction in cells remain unclear (7). Multiple autophagy receptors have been identified with the yeast two-hybrid system (8, 9), which included an N-terminal fragment of optineurin (OPTN), a ubiquitin-binding protein also known as NF-κB essential modulator-related protein ( Fig. 1, A and B). The specific interactions between OPTN and LC3/GABARAP proteins were verified by pull-down assays in mammalian cells, directed yeast two-hybrid transformations, and in vitro using purified proteins ( Fig. 1C and fig. S1, A and B) (10). OPTN bound to ubiquitin chains and autophagy modifiers ATG8/LC3/GABARAP proteins but not to mono-ubiquitin or other ubiquitin-like proteins ( Fig. 1C and fig. S1C). Deletion mapping of the N-terminal region of OPTN identified an LC3 interacting motif (LIR), a linear tetrapeptide sequence present in known autophagy receptors that binds directly to LC3/GABARAP modifiers (9, 11, 12). The LIR was located between the coiled-coil domains of OPTN encompassing amino acids 169 to 209 (Fig. 1A) and was essential for in vitro and in vivo binding between OPTN and LC3/ GABARAP (Fig. 1, B and C, and figs. S1A and S2A). Single point mutations at either OPTN Phe 178 →Ala 178 (F178A) or I181A (13), corresponding to the WxxL of p62, were sufficient to abrogate the interaction with LC3/GABARAP proteins, whereas these mutants were still able to bind to linear ubiquitin chains fused to glutathione S-transferase (GST-4xUb) (...
Ischemia and reperfusion (I/R) injury is associated with extensive loss of cardiac myocytes. Bnip3 is a mitochondrial proapoptotic Bcl-2 protein which is expressed in the adult myocardium. To investigate if Bnip3 plays a role in I/R injury, we generated a TAT-fusion protein encoding the carboxyl terminal transmembrane deletion mutant of Bnip3 (TAT-Bnip3DTM) which has been shown to act as a dominant negative to block Bnip3-induced cell death. Perfusion with TAT-Bnip3DTM conferred protection against I/R injury, improved cardiac function, and protected mitochondrial integrity. Moreover, Bnip3 induced extensive fragmentation of the mitochondrial network and increased autophagy in HL-1 myocytes. 3D rendering of confocal images revealed fragmented mitochondria inside autophagosomes. Enhancement of autophagy by ATG5 protected against Bnip3-mediated cell death, whereas inhibition of autophagy by ATG5K130R enhanced cell death. These results suggest that Bnip3 contributes to I/R injury which triggers a protective stress response with upregulation of autophagy and removal of damaged mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.