Emergency department (ED) crowding represents an international crisis that may affect the quality and access of health care. We conducted a comprehensive PubMed search to identify articles that (1) studied causes, effects, or solutions of ED crowding; (2) described data collection and analysis methodology; (3) occurred in a general ED setting; and (4) focused on everyday crowding. Two independent reviewers identified the relevant articles by consensus. We applied a 5-level quality assessment tool to grade the methodology of each study. From 4,271 abstracts and 188 full-text articles, the reviewers identified 93 articles meeting the inclusion criteria. A total of 33 articles studied causes, 27 articles studied effects, and 40 articles studied solutions of ED crowding. Commonly studied causes of crowding included nonurgent visits, "frequent-flyer" patients, influenza season, inadequate staffing, inpatient boarding, and hospital bed shortages. Commonly studied effects of crowding included patient mortality, transport delays, treatment delays, ambulance diversion, patient elopement, and financial effect. Commonly studied solutions of crowding included additional personnel, observation units, hospital bed access, nonurgent referrals, ambulance diversion, destination control, crowding measures, and queuing theory. The results illustrated the complex, multifaceted characteristics of the ED crowding problem. Additional high-quality studies may provide valuable contributions toward better understanding and alleviating the daily crisis. This structured overview of the literature may help to identify future directions for the crowding research agenda.
By modeling patient flow, rather than operational summary variables, our simulation forecasts several measures of near-future ED crowding, with various degrees of good performance.
The EDWIN, the NEDOCS, and the Work Score monitor current ED crowding with high discriminatory power, although none of them exceeded the performance of occupancy level across the range of operating points. None of the measures provided substantial advance warning before crowding at low rates of false alarms.
Providing timely and effective care in the emergency department (ED) requires the management of individual patients as well as the flow and demands of the entire department. Strategic changes to work processes, such as adding a flow coordination nurse or a physician in triage, have demonstrated improvements in throughput times. However, such global strategic changes do not address the real-time, often opportunistic workflow decisions of individual clinicians in the ED. We believe that real-time representation of the status of the entire emergency department and each patient within it through information visualizations will better support clinical decision-making in-the-moment and provide for rapid intervention to improve ED flow. This notion is based on previous work where we found that clinicians' workflow decisions were often based on an in-the-moment local perspective, rather than a global perspective. Here, we discuss the challenges of designing and implementing visualizations for ED through a discussion of the development of our prototype Throughput Dashboard and the potential it holds for supporting real-time decision-making.
Objectives: The objective was to develop methodology for predicting demand for emergency department (ED) services by characterizing ED arrivals.Methods: One year of ED arrival data from an academic ED were merged with local climate data. ED arrival patterns were described; Poisson regression was selected to represent the count of hourly ED arrivals as a function of temporal, climatic, and patient factors. The authors evaluated the appropriateness of prediction models by whether the data met key Poisson assumptions, including variance proportional to the mean, positive skewness, and absence of autocorrelation among hours. Model accuracy was assessed by comparing predicted and observed histograms of arrival counts and by how frequently the observed hourly count fell within the 50 and 90% prediction intervals.Results: Hourly ED arrivals were obtained for 8,760 study hours. Separate models were fit for high-versus low-acuity patients because of significant arrival pattern differences. The variance was approximately equal to the mean in the high-and low-acuity models. There was no residual autocorrelation (r = 0) present after controlling for temporal, climatic, and patient factors that influenced the arrival rate. The observed hourly count fell within the 50 and 90% prediction intervals 50 and 90% of the time, respectively. The observed histogram of arrival counts was nearly identical to the histogram predicted by a Poisson process.Conclusions: At this facility, demand for ED services was well approximated by a Poisson regression model. The expected arrival rate is characterized by a small number of factors and does not depend on recent numbers of arrivals.ACADEMIC EMERGENCY MEDICINE 2008; 15:337-346 ª
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.