Mild cognitive impairment (MCI) designates the boundary area between cognitive function in natural aging and dementia, and this is viewed as a therapeutic window to prevent the occurrence of dementia. The current study investigated the neurocognitive effects of oral creatine (Cr) supplementation in young female Wistar rats that received intracerebroventricular injections of lipopolysaccharide (LPS) to mimic MCI. Neuromolecular changes within the dentate gyrus were analyzed following behavioral testing. We also investigated both neurocognitive and neuromolecular changes following Cr supplementation in the absence of LPS in young female Wistar rats to further investigate mechanisms. Interestingly, based on trial 2 of Barnes maze test, Cr supplementation ameliorated spatial learning and memory deficit induced by LPS, shown by decreased latency time and errors to reach the escape box (p < 0.0001, n = 12). Cr supplementation also attenuated recognition memory deficit induced by LPS, shown by increased amount of time taken to explore the new object (p = 0.002, n = 12) during novel object recognition testing. Within the dentate gyrus, Cr supplementation in LPS injected rats upregulated mTORC1 signaling (p = 0.026 for mTOR phosphorylation, p = 0.002 for p70S6K phosphorylation, n = 8) as well as the synapsin (p = 0.008) and PSD-95 synaptic proteins (p = 0.015), in comparisons to LPS injected rats. However, Cr supplementation failed to further enhance spatial memory and recognition memory in the absence of LPS. In conclusion, Cr ameliorates LPS-induced cognitive impairment in a rodent MCI model. Mechanistically, these phenotypic effects may, in part, be mitigated via an upregulation of mTORC1 signaling, and an enhancement in synaptogenesis in the dentate gyrus. While preliminary, these findings may inform future research investigating neurocognitive effects of Cr for MCI patients.
Neuroinflammation is an early detectable marker of mild cognitive impairment, the transition state between normal cognition and dementia. Resistance-exercise training can attenuate the cognitive decline observed in patients with mild cognitive impairment. However, the underlying mechanisms of resistance training effects are largely unknown. To further elucidate mechanisms of the known cognitive health benefits from resistance-exercise training, we tested if three weeks of resistance-exercise training could ameliorate lipopolysaccharide-induced neuroinflammation. Five-week-old female Wistar rats received intracerebroventricular injections of lipopolysaccharides to induce neuroinflammation and cognitive impairment. Rats then underwent three weeks of progressive ladder climbing to recapitulate resistance-exercise training in humans. Cognition was assessed towards the end of the training period by novelty object recognition testing. Neuroinflammation was measured one and 24-hours after the last resistance-exercise training workout. Resistance-exercise training ameliorated cognitive impairment, diminished lipopolysaccharide-induced neuroinflammatory cytokine expression, and attenuated astrocyte remodeling in the dentate gyrus 24-hours post exercise. Here, we provide evidence that the ladder-climbing model of resistance-exercise training in rats can improve cognition as early as three weeks. Additionally, these data support the hypothesis that resistance exercise can reduce lipopolysaccharide-induced neuroinflammation in the dentate gyrus.
Physical activity (PA) is a non-invasive, cost-effective means of reducing chronic disease. Most US citizens fail to meet PA guidelines, and individuals experiencing chronic stress are less likely to be physically active. To better understand the barriers to maintaining active lifestyles, we sought to determine the extent to which short- versus long-term PA increases stress- and aversion-related markers in wild-type (WT) and low voluntary running (LVR) rats, a unique genetic model of low physical activity motivation. Here, we tested the effects of 1 and 4 weeks of voluntary wheel-running on physiological, behavioral, and molecular measures of stress and Hypothalamic Pituitary Adrenal (HPA)-axis responsiveness (corticosterone levels, adrenal wet weights, and fecal boli counts). We further determined measures of aversion-related signaling (kappa opioid receptor, dynorphin, and corticotropin releasing hormone mRNA expression) in the basolateral amygdala (BLA), a brain region well characterized for its role in anxiety and aversion. Compared to sedentary values, 1, but not 4 weeks of voluntary wheel-running increased adrenal wet weights and plasma corticosterone levels, suggesting that HPA responsiveness normalizes following long-term PA. BLA mRNA expression of prodynorphin (Pdyn) was significantly elevated in WT and LVR rats following 1 week of wheel-running compared to sedentary levels, suggesting that aversion-related signaling is elevated following short- but not long-term wheel-running. In all, it appears that the stress effects of acute PA may increase molecular markers associated with aversion in the BLA, and that LVR rats may be more sensitive to these effects, providing a potential neural mechanism for their low PA motivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.