A long-held tenet of neuromuscular transmission is that calcium-dependent neurotransmitter release is mediated by N-type calcium channels in frog but P/Q-type channels in mammals. The N-type assignment in frog is based principally on pharmacological sensitivity to ω-conotoxin GVIA. Our studies show that zebrafish neuromuscular transmission is also sensitive to ω-conotoxin GVIA. However, positional cloning of a mutant line with compromised neuromuscular function identified a mutation in a P/Q- rather than N-type channel. Cloning and heterologous expression of this P/Q-type channel confirmed a block by ω-conotoxin GVIA raising the likelihood that all vertebrates, including frog, utilize the P/Q-type calcium channel for neuromuscular transmission. Additionally, our P/Q defective mutant line offered a means of testing the ability of roscovitine, known to potentiate frog neuromuscular transmission, to mediate behavioral and functional rescue. Acute treatment led to rapid improvement of both, pointing to potential therapeutic benefit for myasthenic disorders involving calcium channel dysfunction.
GABAergic signaling is essential for proper respiratory function. Potentiation of this signaling with allosteric modulators such as anesthetics, barbiturates, and neurosteroids can lead to respiratory arrest. Paradoxically, pregnant animals continue to breathe normally despite nearly 100-fold increases in circulating neurosteroids. ε subunit-containing GABAARs are insensitive to positive allosteric modulation, thus we hypothesized that pregnant rats increase ε subunit-containing GABAAR expression on brainstem neurons of the ventral respiratory column (VRC). In vivo, pregnancy rendered respiratory motor output insensitive to otherwise lethal doses of pentobarbital, a barbiturate previously used to categorize the ε subunit. Using electrode array recordings in vitro, we demonstrated that putative respiratory neurons of the preBötzinger Complex (preBötC) were also rendered insensitive to the effects of pentobarbital during pregnancy, but unit activity in the VRC was rapidly inhibited by the GABAAR agonist, muscimol. VRC unit activity from virgin and post-partum females was potently inhibited by both pentobarbital and muscimol. Brainstem ε subunit mRNA and protein levels were increased in pregnant rats, and GABAAR ε subunit expression co-localized with a marker of rhythm generating neurons (neurokinin 1 receptors) in the preBötC. These data support the hypothesis that pregnancy renders respiratory motor output and respiratory neuron activity insensitive to barbiturates, most likely via increased ε subunit-containing GABAAR expression on respiratory rhythm-generating neurons. Increased ε subunit expression may be critical to preserve respiratory function (and life) despite increased neurosteroid levels during pregnancy.
Non-technical summary Steroidal sex hormones (testosterone, oestradiol and progesterone) play an important role in the neural control of breathing. Hormone levels typically change throughout life. Testosterone levels increase during puberty in boys, but from ∼30 years of age levels decline gradually. The typical age of onset for obstructive sleep apnoea, a prominent breathing disorder of older humans, is ∼50 years of age in men. In a study in old male rats, we show that testosterone supplementation can reverse the age-associated decrease in one measurement of the neural control of breathing. We conclude that testosterone supplementation can potentially be used to enhance upper airway function in the elderly.Abstract Steroidal sex hormones play an important role in the neural control of breathing. Previous studies in our laboratory have shown that gonadectomy in young male rats (3 months) eliminates a form of respiratory plasticity induced by intermittent hypoxia, known as long term facilitation (LTF). Testosterone replenishment restores LTF in gonadectomized male rats, and this is dependent on the conversion of testosterone to oestradiol by aromatase. By middle age (12 months), male rats no longer exhibit LTF of hypoglossal motor output; phrenic LTF is significantly reduced, and this persists into old age. We tested the hypothesis that LTF can be restored in old male rats by administration of testosterone. Intact Fischer 344 rats (>20 months) were implanted with Silastic tubing containing testosterone (T), T plus an aromatase inhibitor (T+ADT), or 5α-dihydrotestosterone (DHT), a form of testosterone not converted to oestradiol. One week post-surgery, LTF of hypoglossal and phrenic motor output was measured. By comparison with control rats, hypoglossal LTF was increased in testosterone-treated rats, with levels approaching that of normal young rats. LTF was not restored in T+ADT or DHT-treated rats. Aromatase levels in hypoglossal and phrenic nuclei did not change with age. As serum testosterone levels did not decline with age, local bioavailability of testosterone in old rats may be a limiting factor in the expression of this form of respiratory plasticity. Our findings suggest that testosterone supplementation could potentially be used to enhance upper airway control in the elderly. Abbreviations ADT, 1,4,9-androstatriene-3,17-dione; AR, androgen receptor; BDNF, brain-derived neurotrophic factor; DHT, 5α-dihydrotestosterone; E 2 , oestradiol; ER, oestrogen receptor; LTF, long term facilitation; MAP, mean arterial pressure; OSA, obstructive sleep apnoea; SHBG, sex hormone binding globulin; T, testosterone; TrkB, tyrosine kinase B; XII, hypoglossal; %BL, percentage change in peak integrated nerve amplitude from baseline; Phr, peak integrated phrenic amplitude; XII, peak integrated hypoglossal amplitude.
Mutations in muscle ACh receptors cause slow-channel syndrome (SCS) and Escobar syndrome, two forms of congenital myasthenia. SCS is a dominant disorder with mutations reported for all receptor subunits except γ. Escobar syndrome is distinct, with mutations located exclusively in γ, and characterized by developmental improvement of muscle function. The zebrafish mutant line, twister , models SCS in terms of a dominant mutation in the α subunit (α twi ) but shows the behavioral improvement associated with Escobar syndrome. Here, we present a unique electrophysiological study into developmental improvement for a myasthenic syndrome. The embryonic α twi βδγ receptor isoform produces slowly decaying synaptic currents typical of SCS that transit to a much faster decay upon the appearance of adult ε, despite the α twi mutation. Thus, the continued expression of α twi into adulthood is tolerated because of the ε expression and associated recovery, raising the likelihood of unappreciated myasthenic cases that benefit from the γ−ε switch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.