ObjectiveClinical neurological assessment is challenging for severe traumatic brain injury (TBI) patients in the acute setting. Waves of neurochemical abnormalities that follow TBI may serve as fluid biomarkers of neurological status. We assessed the cerebrospinal fluid (CSF) levels of glutamate, lactate, BDNF, and GDNF, to identify potential prognostic biomarkers of neurological outcome.MethodsThis cross‐sectional study was carried out in a total of 20 consecutive patients (mean [SD] age, 29 [13] years; M/F, 9:1) with severe TBI Glasgow Coma Scale ≤ 8 and abnormal computed tomography scan on admission. Patients were submitted to ventricular drainage and had CSF collected between 2 and 4 h after hospital admission. Patients were then stratified according to two clinical outcomes: deterioration to brain death (nonsurvival, n = 6) or survival (survival, n = 14), within 3 days after hospital admission. CSF levels of brain‐derived substances were compared between nonsurvival and survival groups. Clinical and neurological parameters were also assessed.ResultsGlutamate and lactate are significantly increased in nonsurvival relative to survival patients. We tested the accuracy of both biomarkers to discriminate patient outcome. Setting a cutoff of >57.75, glutamate provides 80.0% of sensitivity and 84.62% of specificity (AUC: 0.8214, 95% CL: 54.55–98.08%; and a cutoff of >4.65, lactate has 100% of sensitivity and 85.71% of specificity (AUC: 0.8810, 95% CL: 54.55–98.08%). BDNF and GDNF did not discriminate poor outcome.InterpretationThis early study suggests that glutamate and lactate concentrations at hospital admission accurately predict death within 3 days after severe TBI.
Traumatic brain injury (TBI) increases Ca 2+ influx into neurons and desynchronizes mitochondrial function leading to energy depletion and apoptosis. This process may be influenced by brain testosterone (TS) levels, which are known to decrease after TBI. We hypothesized that a TS-based therapy could preserve mitochondrial neuroenergetics after TBI, thereby reducing neurodegeneration. C57BL/6J mice were submitted to sham treatment or severe parasagittal controlled cortical impact (CCI) and were subcutaneously injected with either vehicle (VEH-SHAM and VEH-CCI) or testosterone cypionate (15 mg/kg, TS-CCI) for 10 days. Cortical tissue homogenates ipsilateral to injury were used for neurochemical analysis. The VEH-CCI group displayed an increased Ca 2+-induced mitochondrial swelling after the addition of metabolic substrates (pyruvate, malate, glutamate, succinate, and adenosine diphosphate [PMGSA]). The addition of Na + stimulated mitochondrial Ca 2+ extrusion through Na + /Ca 2+ /Li + exchanger (NCLX) in VEH-SHAM and TS-CCI, but not in the VEH-CCI group. Reduction in Ca 2+ efflux post-injury was associated with impaired mitochondrial membrane potential formation/dissipation, and decreased mitochondrial adenosine triphosphate (ATP)-synthase coupling efficiency. Corroborating evidence of mitochondrial uncoupling was observed with an increase in H 2 O 2 production post-injury, but not in superoxide dismutase (SOD2) protein levels. TS administration significantly reduced these neuroenergetic alterations. At molecular level, TS prevented the increase in pTau Ser396 and alpha-Spectrin fragmentation by the Ca 2+ dependent calpain-2 activation, and decreased both caspase-3 activation and Bax/BCL-2 ratio, which suggests a downregulation of mitochondrial apoptotic signals. Search Tool for the Retrieval of Interacting Genes/Proteins database provided two distinct gene/protein clusters, ''upregulated and downregulated,'' interconnected through SOD2. Therefore, TS administration after a severe CCI improves the mitochondrial Ca 2+ extrusion through NCLX exchanger and ATP synthesis efficiency, ultimately downregulating the overexpression of molecular drivers of neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.