Big, time-scaled phylogenies are fundamental to connecting evolutionary processes to modern biodiversity patterns. Yet inferring reliable phylogenetic trees for thousands of species involves numerous trade-offs that have limited their utility to comparative biologists. To establish a robust evolutionary timescale for all approximately 6,000 living species of mammals, we developed credible sets of trees that capture root-to-tip uncertainty in topology and divergence times. Our “backbone-and-patch” approach to tree building applies a newly assembled 31-gene supermatrix to two levels of Bayesian inference: (1) backbone relationships and ages among major lineages, using fossil node or tip dating, and (2) species-level “patch” phylogenies with nonoverlapping in-groups that each correspond to one representative lineage in the backbone. Species unsampled for DNA are either excluded (“DNA-only” trees) or imputed within taxonomic constraints using branch lengths drawn from local birth–death models (“completed” trees). Joining time-scaled patches to backbones results in species-level trees of extant Mammalia with all branches estimated under the same modeling framework, thereby facilitating rate comparisons among lineages as disparate as marsupials and placentals. We compare our phylogenetic trees to previous estimates of mammal-wide phylogeny and divergence times, finding that (1) node ages are broadly concordant among studies, and (2) recent (tip-level) rates of speciation are estimated more accurately in our study than in previous “supertree” approaches, in which unresolved nodes led to branch-length artifacts. Credible sets of mammalian phylogenetic history are now available for download at http://vertlife.org/phylosubsets, enabling investigations of long-standing questions in comparative biology.
Accurate taxonomy is central to the study of biological diversity, as it provides the needed evolutionary framework for taxon sampling and interpreting results. While the number of recognized species in the class Mammalia has increased through time, tabulation of those increases has relied on the sporadic release of revisionary compendia like the Mammal Species of the World (MSW) series. Here, we present the Mammal Diversity Database (MDD), a digital, publically accessible, and updateable list of all mammalian species, now available online: https://mammaldiversity.org. The MDD will continue to be updated as manuscripts describing new species and higher taxonomic changes are released. Starting from the baseline of the 3rd edition of MSW (MSW3), we performed a review of taxonomic changes published since 2004 and digitally linked species names to their original descriptions and subsequent revisionary articles in an interactive, hierarchical database. We found 6,495 species of currently recognized mammals (96 recently extinct, 6,399 extant), compared to 5,416 in MSW3 (75 extinct, 5,341 extant)-an increase of 1,079 species in about 13 years, including 11 species newly described as having gone extinct in the last 500 years. We tabulate 1,251 new species recognitions, at least 172 unions, and multiple major, higher-level changes, including an additional 88 genera (1,314 now, compared to 1,226 in MSW3) and 14 newly recognized families (167 compared to 153). Analyses of the description of new species through time and across biogeographic regions show a long-term global rate of ~25 species recognized per year, with the Neotropics as the overall most species-dense biogeographic region for mammals, followed closely by the Afrotropics. The MDD provides the mammalogical community with an updateable online database of taxonomic changes, joining digital efforts already established for amphibians (AmphibiaWeb, AMNH's Amphibian Species of the World), birds (e.g., Avibase, IOC World Bird List, HBW Alive), non-avian reptiles (The Reptile Database), and fish (e.g., FishBase, Catalog of Fishes).Una taxonomía que precisamente refleje la realidad biológica es fundamental para el estudio de la diversidad de la vida, ya que proporciona el armazón evolutivo necesario para el muestreo de taxones e interpretación de resultados del mismo. Si bien el número de especies reconocidas en la clase Mammalia ha aumentado con el tiempo, la tabulación de esos aumentos se ha basado en las esporádicas publicaciones de compendios de revisiones taxonómicas, tales como la serie Especies de mamíferos del mundo (MSW por sus siglas en inglés). En este trabajo presentamos la Base de Datos de Diversidad de Mamíferos (MDD por sus siglas en inglés): una lista digital de todas las especies de mamíferos, actualizable y accesible públicamente, disponible en la dirección URL https://mammaldiversity.org/. El MDD se actualizará con regularidad a medida que se publiquen artículos que describan nuevas especies o que introduzcan cambios de diferentes categorías taxonómica...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.