We report new instrumentation for rapidly and reliably measuring the temperature-dependent photoluminescence response from porous silicon as a function of analyte vapor concentration. The new system maintains the porous silicon under inert conditions and it allows on-the-fly steady-state and time-resolved photoluminescence intensity and hyper-spectral measurements between 293 K and 450 K. The new system yields reliable data at least 100-fold faster in comparison to previous instrument platforms.
We report on gaseous analyte-induced photoluminescence (PL) quenching of porous silicon, as-prepared (ap-pSi) and oxidized (ox-pSi). By using steady-state and emission wavelength-dependent time-resolved intensity luminescence measurements in concert with a global analysis scheme, we find that the analyte-induced quenching is best described by a three-component static quenching model. In the model, there are blue, green, and red emitters (associated with the nanocrystallite core and surface trap states) that each exhibit unique analyte-emitter association constants and these association constants are a consequence of differences in the pSi surface chemistries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.