Gaussian-type soliton solutions of the nonlinear Schrödinger (NLS) equation with fourth order dispersion, and power law nonlinearity in the novel parity-time (
)-symmetric quartic Gaussian potential are derived analytically and numerically. The exact analytical expressions of the solutions are obtained in the first two-dimensional (1D and 2D) power law NLS equations. By means of the linear stability analysis, the effect of power law nonlinearity on the stability of Gauss type solitons in different nonlinear media is carried out. Numerical investigations do confirm the stability of our soliton solutions in both focusing and defocusing cases, specially around the propagation parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.