Sea ice can attenuate Southern Ocean swell before it reaches Antarctic ice shelves and imposes flexural stresses, which promote calving of outer ice-shelf margins and influence ice shelf stability. An algorithm is developed to identify sea ice-free corridors that connect the open Southern Ocean to Antarctic ice shelves from daily satellite sea ice concentration data between 1979–2019. Large swell in the corridors available to impact the ice shelves is extracted from spectral wave model hindcast data. For a selection of ice shelves around the Antarctic coastline, corridors are assessed in terms of duration and areal extent. The availability of large swell to impact certain ice shelves through the corridors is evaluated from spectral wave data for daily statistical properties and the number of large swell days per year. Results integrated over a large number of ice shelves are used to assess overall trends. Large variations are found between individual ice shelves for both corridors and available swell, with contrasting trends between the West and East Antarctic Ice Sheets. The findings indicate ice shelves likely to experience prolonged periods of appreciable outer margin flexure due to large swell action, such as the Fimbul, Shackleton and Ross Ice Shelves, which could exacerbate climate-driven weakening and decreasing buttressing capacity, with implications for sea-level rise.
<p>Over the last three decades there have been two catastrophic disintegrations events on the Antarctic peninsula, the Larsen A ice shelf in 1995 and the Larsen B in 2002, alongside the Wilkins ice shelf which underwent multiple partial disintegrations between 1998&#8212;2009.&#160; Previous research into these events indicated that there had been prolonged periods where the Larsen and Wilkins Ice Shelves were without a sea-ice buffer to protect them from ocean swell in the leadup to their respective disintegrations. Swell potentially acted as a trigger mechanism to each shelf to disintegrated, as they had already been destabilised by surface flooding, fracturing, thinning and other glaciological factors.</p><p>This study will focus on the algorithm we developed which calculates the time where an ice shelf is without a local sea ice buffer (&#8220;exposure&#8221;), the size of the ocean which could directly propagate waves into the shelf (&#8220;corridor&#8221;) and the maximum wave height of swell which is directed towards the shelf in the corridor. An analysis of the last forty-one years showed that there was a large variation over individual ice shelves for both exposure and the available swell, due to the impact of polynyas, ice tongues and fast-ice growth which can protect the ice shelf. On a regional scale, the East Antarctic Ice Shelf and West Antarctic Ice Shelf had opposing trends, with the West Antarctic Ice Shelf recording a weak increasing trend of exposure and available swell.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.