The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid {C6H4[B(OH)2]2} and hexahydroxytriphenylene [C18H6(OH)6]. Powder x-ray diffraction studies of the highly crystalline products (C3H2BO)6.(C9H12)1 (COF-1) and C9H4BO2 (COF-5) revealed expanded porous graphitic layers that are either staggered (COF-1, P6(3)/mmc) or eclipsed (COF-5, P6/mmm). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 degrees to 600 degrees C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively).
The structures of all 1127 three-periodic extended metal-organic frameworks (MOFs) reported in the Cambridge Structure Database have been analyzed, and their underlying topology has been determined. It is remarkable that among the almost infinite number of net topologies that are available for MOFs to adopt, only a handful of nets are actually observed. The discovery of this inversion between expected and observed nets led us to deduce a system of classification "taxonomy" for interpreting and rationalizing known MOF structures, as well as those that will be made in future. The origin of this inversion is attributed to the different modes with which MOF synthesis has been approached. Specifically, three levels of complexity are defined that embody rules "grammar" for the design of MOFs and other extended structures. This system accounts for the present proliferation of MOF structures of high symmetry nets, but more importantly, it provides the basis for designing a building block that "codes" for a specific structure and, indeed, only that structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.