The aim of this study was to test the efficacy of the BEX Runner palm cooling device during a combination of exercise and environmental heat stress. Twelve subjects completed two randomly ordered time-to-exhaustion runs at 75% VO2max, 30 °C, and 50% relative humidity with and without palm cooling. Time to exhaustion runs started once the warm-up had elicited a core temperature of 37.5 °C. Heart rate, Rating of Perceived Exertion, Feeling Scale, and core temperature were recorded at 2-min intervals during each run. Time to exhaustion was longer in control than treatment (46.7±31.1 vs. 41.3±26.3 min, respectively, p<0.05); however, when warm-up time was included in analysis, there was no difference between trials for total exercise time (52.5±24.2 vs. 54.5±31.4 min, respectively). The rate-of-rise of core temperature was not different between control and treatment (0.047 vs. 0.048 °C · min-1, respectively). The use of the BEX Runner palm cooling device during a run in hot conditions did not eliminate or even attenuate the rise in core temperature. Exercise time in hot conditions did not increase with the use of the palm cooling device and time to exhaustion was reduced.
Clinicians are in need of valid and objective measures of postural sway. Accelerometers have been shown to be suitable alternatives to expensive and stationary force plates. We evaluated the test-retest reliability and balance task discrimination capability of a new wireless triaxial accelerometer (YEI 3-Space Sensor). Four testing conditions (eyes open or closed, while on a firm or compliant surface) were used to progressively challenge the static balance of 20 healthy male (n = 8) and female (n = 12) older adults (mean age 81 ± 4.3 y). Subjects completed 2 blocks of three 30-second trials per condition. The accelerometer was positioned on the lower back to acquire mediolateral (M-L) and anterior-posterior (A-P) accelerations. Intraclass correlation coefficients were all good to excellent, with values ranging from .736 to .972 for trial-to-trial and from .760 to .954 for block-to- block. A significant stepwise increase in center of mass acceleration root mean square values was found across the 4 balance conditions (F[1.49, 28.26] = 39.54, P < .001). The new accelerometer exhibited good to excellent trial-to-trial and block-to-block reliability and was sensitive to differences in visual and surface conditions and acceleration axes.
Researchers and clinicians have suggested that overuse injuries to the lower back and lower extremities of figure skaters may be associated with the repeated high impact forces sustained during jump landings. Our primary aim was to compare the vertical ground reaction forces (GRFs) in freestyle figure skaters (n = 26) and non-skaters (n = 18) for the same barefoot single leg landing on a force plate from a 20 cm platform. Compared with non-skaters, skaters exhibited a significantly greater normalised peak GRF (3.50 ± 0.47 × body weight for skaters vs. 3.13 ± 0.45 × body weight for non-skaters), significantly shorter time to peak GRF (81.21 ± 14.01 ms for skaters vs. 93.81 ± 16.49 ms for non-skaters), and significantly longer time to stabilisation (TTS) of the GRF (2.38 ± 0.07 s for skaters vs. 2.22 ± 0.07 s for non-skaters). Skaters also confined their centre of pressure (CoP) to a significantly smaller mediolateral (M-L) (25%) and anterior-posterior (A-P) (40%) range during the landing phase, with the position of the CoP located in the mid to forefoot region. The narrower and more forward position of the CoP in skaters may at least partially explain the greater peak GRF, shorter time to peak, and longer TTS. Training and/or equipment modification serve as potential targets to decrease peak GRF by distributing it over a longer time period. More comprehensive studies including electromyography and motion capture are needed to fully characterise the unique figure skater landing strategy.
It was suggested that baseline levels of postural control in figure skaters might influence the effectiveness of neuromuscular training. The aims of the present study were to investigate the baseline association of skater skill level with standard center of pressure metrics and time to stabilization, and to determine if skill level influenced the effectiveness of a 6-week neuromuscular training program. There was no main effect of skill level for any baseline center of pressure metric for either test. There was no main effect of skill level on the percent change in any metric for the single leg stance following training. However, skill level did influence landing test outcome measures. The difference in percent change of root mean squared was evident for the mediolateral (low: 24.5±16.50% vs. high: 2.42±14.99%) and anterior-posterior (low: 6.66±9.21% vs. high: - 4.03±5.91%) axes. Percent change in anterior-posterior time to stabilization also differed by skill level (low: - 0.73%±4.74 vs. high: - 5.61%±2.76). Note that this study was underpowered with 26 subjects and 14 subjects contributing to baseline and post-training assessments, respectively. Though no baseline differences in postural control were observed, compared with low skill levels, high skill levels benefitted more from training.
Other factors besides education may impact the performance of older adults on the MMSE and SLUMS, but it does appear that education level may moderate the score disparity between the 2 instruments. Additional studies are needed before using the MMSE to predict the score on the SLUMS and vice versa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.