Organometallic reaction mechanisms are assumed to be appropriately described by minimum energy pathways mapped out by density functional theory calculations. For the two-step oxidative addition/reductive elimination mechanism for C-H activation of methane and benzene by cationic Cp*(PMe)Ir(CH), we report quasiclassical direct dynamics simulations that demonstrate the Ir-H intermediate is bypassed in a significant amount of productive trajectories initiated from vibrationally averaged velocity distributions of oxidative addition transition states. This organometallic dynamical mechanism is akin to the σ-bond metathesis pathway but occurs on the oxidative addition/reductive elimination energy surface and blurs the line between two- and one-step mechanisms. Quasiclassical trajectories also reveal that the momentum of crossing the reductive elimination structure always induces complete alkane and arene dissociation from the Ir metal center, skipping weak C-H σ and π coordination complexes. This suggests that these weak coordination complexes after reductive elimination are not necessarily on the reaction pathway and likely result from a solvent cage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.