MicroRNAs (miRNAs) are small non-coding RNAs that are extensively involved in many physiological and disease processes. One major challenge in miRNA studies is the identification of genes regulated by miRNAs. To this end, we have developed an online resource, miRDB (http://mirdb.org), for miRNA target prediction and functional annotations. Here, we describe recently updated features of miRDB, including 2.1 million predicted gene targets regulated by 6709 miRNAs. In addition to presenting precompiled prediction data, a new feature is the web server interface that allows submission of user-provided sequences for miRNA target prediction. In this way, users have the flexibility to study any custom miRNAs or target genes of interest. Another major update of miRDB is related to functional miRNA annotations. Although thousands of miRNAs have been identified, many of the reported miRNAs are not likely to play active functional roles or may even have been falsely identified as miRNAs from high-throughput studies. To address this issue, we have performed combined computational analyses and literature mining, and identified 568 and 452 functional miRNAs in humans and mice, respectively. These miRNAs, as well as associated functional annotations, are presented in the FuncMir Collection in miRDB.
The CRISPR/Cas9 system has been rapidly adopted for genome editing. However, one major issue with this system is the lack of robust bioinformatics tools for design of single guide RNA (sgRNA), which determines the efficacy and specificity of genome editing. To address this pressing need, we analyze CRISPR RNA-seq data and identify many novel features that are characteristic of highly potent sgRNAs. These features are used to develop a bioinformatics tool for genome-wide design of sgRNAs with improved efficiency. These sgRNAs as well as the design tool are freely accessible via a web server, WU-CRISPR (http://crispr.wustl.edu).Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0784-0) contains supplementary material, which is available to authorized users.
The CRISPR/Cas9 system has been rapidly adopted for genome editing. However, one major issue with this system is the lack of robust bioinformatics tools for design of single guide RNA (sgRNA), which determines the efficacy and specificity of genome editing. To address this pressing need, we analyze CRISPR RNA-seq data and identify many novel features that are characteristic of highly potent sgRNAs. These features are used to develop a bioinformatics tool for genome-wide design of sgRNAs with improved efficiency. These sgRNAs as well as the design tool are freely accessible via a web server, WU-CRISPR (http://crispr.wustl.edu).
Background
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.