In vivo, 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible, stereospecific retro-aldol cleavage of KDPG to pyruvate and D-glyceraldehyde-3-phosphate. The enzyme is a lysine-dependent (Class I) aldolase that functions through the intermediacy of a Schiff base. Here, we propose a mechanism for this enzyme based on crystallographic studies of wild-type and mutant aldolases. The three dimensional structure of KDPG aldolase from the thermophile Thermotoga maritima was determined to 1.9A. The structure is the standard alpha/beta barrel observed for all Class I aldolases. At the active site Lys we observe clear density for a pyruvate Schiff base. Density for a sulfate ion bound in a conserved cluster of residues close to the Schiff base is also observed. We have also determined the structure of a mutant of Escherichia coli KDPG aldolase in which the proposed general acid/base catalyst has been removed (E45N). One subunit of the trimer contains density suggesting a trapped pyruvate carbinolamine intermediate. All three subunits contain a phosphate ion bound in a location effectively identical to that of the sulfate ion bound in the T. maritima enzyme. The sulfate and phosphate ions experimentally locate the putative phosphate binding site of the aldolase and, together with the position of the bound pyruvate, facilitate construction of a model for the full-length KDPG substrate complex. The model requires only minimal positional adjustments of the experimentally determined covalent intermediate and bound anion to accommodate full-length substrate. The model identifies the key catalytic residues of the protein and suggests important roles for two observable water molecules. The first water molecule remains bound to the enzyme during the entire catalytic cycle, shuttling protons between the catalytic glutamate and the substrate. The second water molecule arises from dehydration of the carbinolamine and serves as the nucleophilic water during hydrolysis of the enzyme-product Schiff base. The second water molecule may also mediate the base-catalyzed enolization required to form the carbon nucleophile, again bridging to the catalytic glutamate. Many aspects of this mechanism are observed in other Class I aldolases and suggest a mechanistically and, perhaps, evolutionarily related family of aldolases distinct from the N-acetylneuraminate lyase (NAL) family.
These results suggest that the scope of directed evolution is substantially larger than previously envisioned in that it is possible to perturb the active site residues themselves as well as surrounding loops to alter specificity. The structure of the double mutant shows how catalytic competency is maintained despite spatial reorganization of the active site with respect to substrate.
We have previously reported a direct triggering approach [Thompson, D. H., et al. (1996) Biochim. Biophys. Acta 1279, 25-34; Gerasimov, O. V., et al. (1997) Biochim. Biophys. Acta 1324, 200-214] based on the facile degradation of plasmenylcholine and diplasmenylcholine vinyl ether linkages by either photooxidation or low-pH environments. This report describes a novel, cascade-type triggering technique that utilizes liposome photooxidation and contents release to activate an enzyme capable of destabilizing conventional phosphatidylcholine liposomes. Our application of this concept employs a mixture of two different liposome populations, one composed of synthetic diplasmenylcholine (1, 2-dihexadec-1'-enyl-sn-glycero-3-phosphocholine, DPPlsCho) containing Ca2+ as a signaling agent for phospholipase A2 (PLA2) and the second composed of 1, 2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC) with encapsulated calcein as the reporter molecule. Bacteriochlorophyll (BChl)-sensitized photorelease of Ca2+ from PLA2-resistant DPPlsCho liposomes activates extravesicular PLA2, thereby promoting catalyzed DPPC hydrolysis in a secondary triggering reaction, leading to calcein release. BChl/DPPlsCho/DHC/DPPE-PEG5000/Ca2+IN (0.5:85:10:5) liposomes can be phototriggered using 800 nm excitation, resulting in Ca2+ release (t50% release = 15 min) that cocatalyzes the release of calcein (t50% release = 40 min) from DPPC liposomes (1.5 mM total lipid in DPPlsCho liposomes, 0.18 mM DPPC, 210 micro M final Ca2+ concentration, 90 units of PLA2/ml, 50 mM calcein, and 36 micro M EDTA). No appreciable calcein release occurs in the absence of either PLA2 or BChl/DPPlsCho/DHC/DPPE-PEG5000/CaIN liposomes. The implications of this cascade triggering technique on drug delivery approaches are briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.