Context. The Alpha Magnetic Spectrometer (AMS-02) measured several secondary-to-primary ratios enabling a detailed study of Galactic cosmic-ray transport. Aims. We constrain previously derived benchmark scenarios (based on AMS-02 B/C data only) using other secondary-to-primary ratios to test the universality of transport and the presence of a low-rigidity diffusion break. Methods. We use the 1D thin disc/thick halo propagation model of USINE V3.5 and a χ2 minimisation accounting for a covariance matrix of errors (AMS-02 systematics) and nuisance parameters (cross-sections and solar modulation uncertainties). Results. The combined analysis of AMS-02 Li/C, Be/C, and B/C strengthens the case for a diffusion slope of δ = 0.50 ± 0.03 with a low-rigidity break or upturn of the diffusion coefficient at GV rigidities. Our simple model can successfully reproduce all considered data (Li/C, Be/C, B/C, N/O, and 3He/4He), although several issues remain: (i) the quantitative agreement depends on the assumptions made on the poorly constrained correlation lengths of AMS-02 data systematics; (ii) combined analyses are very sensitive to production cross-sections, and we find post-fit values differing by ∼5 − 15% from their most likely values (roughly within currently estimated nuclear uncertainties); (iii) two very distinct regions of the parameter space remain viable, either with reacceleration and convection, or with purely diffusive transport. Conclusions. To take full benefit of combined analyses of AMS-02 data, better nuclear data and a better handle on energy correlations in the data systematic are required. AMS-02 data on heavier species are eagerly awaited to explore cosmic-ray propagation scenarios further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.