The architecture of the text-reuse detection system consists of three main modules, i.e., source retrieval, text analysis, and knowledge-based postprocessing. Each module plays an important role in the accuracy rate of the detection outputs. Therefore, this research focuses on developing the source retrieval system in cases where the source documents have been obfuscated in different levels. Two steps of term weighting were applied to get such documents. The first was the local-word weighting, which has been applied to the test or reused documents to select query per text segments. The tf-idf term weighting was applied for indexing all documents in the corpus and as the basis for computing cosine similarity between the queries per segment and the documents in the corpus. A two-step filtering technique was applied to get the source document candidates. Using artificial cases of text reuse testing, the system achieves the same rates of precision and recall that are 0.967, while the recall rate for the simulated cases of reused text is 0.66.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.