Summary The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making.
A broad range of neural and behavioral data suggests that the brain contains multiple systems for behavioral choice, including one associated with prefrontal cortex and another with dorsolateral striatum. However, such a surfeit of control raises an additional choice problem: how to arbitrate between the systems when they disagree. Here, we consider dual-action choice systems from a normative perspective, using the computational theory of reinforcement learning. We identify a key trade-off pitting computational simplicity against the flexible and statistically efficient use of experience. The trade-off is realized in a competition between the dorsolateral striatal and prefrontal systems. We suggest a Bayesian principle of arbitration between them according to uncertainty, so each controller is deployed when it should be most accurate. This provides a unifying account of a wealth of experimental evidence about the factors favoring dominance by either system.
Decision making in an uncertain environment poses a conflict between the opposing demands of gathering and exploiting information. In a classic illustration of this 'explorationexploitation' dilemma1, a gambler choosing between multiple slot machines balances the desire to select what seems, on the basis of accumulated experience, the richest option, against the desire to choose a less familiar option that might turn out more advantageous (and thereby provide information for improving future decisions). Far from representing idle curiosity, such exploration is often critical for organisms to discover how best to harvest resources such as food and water. In appetitive choice, substantial experimental evidence, underpinned by computational reinforcement learning2 (RL) theory, indicates that a dopaminergic3,4, striatal5-9 and medial prefrontal network mediates learning to exploit. In contrast, although exploration has been well studied from both theoretical1 and ethological10 perspectives, its neural substrates are much less clear. Here we show, in a gambling task, that human subjects' choices can be characterized by a computationally well-regarded strategy for addressing the explore/exploit dilemma. Furthermore, using this characterization to classify decisions as exploratory or exploitative, we employ functional magnetic resonance imaging to show that the frontopolar cortex and intraparietal sulcus are preferentially active during exploratory decisions. In contrast, regions of striatum and ventromedial prefrontal cortex exhibit activity characteristic of an involvement in value-based exploitative decision making. The results suggest a model of action selection under uncertainty that involves switching between exploratory and exploitative behavioural modes, and provide a computationally precise characterization of the contribution of key decision-related brain systems to each of these functions.Exploration is a computationally refined capacity, demanding careful regulation. Two possibilities for this regulation arise. On the one hand, we might expect the involvement of cognitive, prefrontal control systems11 that can supervene12 over simpler dopaminergic/ striatal habitual mechanisms. On the other hand, theoretical work on optimal exploration1,13 indicates a more unified architecture, according to which actions can be assessed with the use of a metric that integrates both primary reward and the informational value of exploration, even in simple, habitual decision systems.We studied patterns of behaviour and brain activity in 14 healthy subjects while they performed a 'four-armed bandit' task involving repeated choices between four slot machines ( Fig. 1; see Supplementary Methods). The slots paid off points (to be exchanged for money) noisily around four different means. Unlike standard slots, the mean payoffs changed randomly and independently from trial to trial, with subjects finding information about the current worth of a slot only through sampling it actively. This feature of the experimental design,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.