SummaryWhereas intracellular carbon metabolism has emerged as an attractive drug target, the carbon sources of intracellularly replicating pathogens, such as the tuberculosis bacillus Mycobacterium tuberculosis, which causes long-term infections in one-third of the world’s population, remain mostly unknown. We used a systems-based approach—13C-flux spectral analysis (FSA) complemented with manual analysis—to measure the metabolic interaction between M. tuberculosis and its macrophage host cell. 13C-FSA analysis of experimental data showed that M. tuberculosis obtains a mixture of amino acids, C1 and C2 substrates from its host cell. We experimentally confirmed that the C1 substrate was derived from CO2. 13C labeling experiments performed on a phosphoenolpyruvate carboxykinase mutant revealed that intracellular M. tuberculosis has access to glycolytic C3 substrates. These findings provide constraints for developing novel chemotherapeutics.
Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL) for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using 13C-metabolic flux analysis (MFA). Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with 13C labeled glycerol or sodium bicarbonate. Through measurements of the 13C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate – oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO2 into biomass. As the human host is abundant in CO2 this finding requires further investigation in vivo as CO2 fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using 13C-MFA.
SummaryThe 'substantial equivalence' of three transgenic wheats expressing additional highmolecular-weight subunit genes and the corresponding parental lines (two lines plus a null transformant) was examined using metabolite profiling of samples grown in replicate field trials on two UK sites (Rothamsted, Hertfordshire and Long Ashton, near Bristol) for 3 years.Multivariate comparison of the proton nuclear magnetic resonance spectra of polar metabolites extracted with deuterated methanol-water showed a stronger influence of site and year than of genotype. Nevertheless, some separation between the transgenic and parental lines was observed, notably between the transgenic line B73-6-1 (which had the highest level of transgene expression) and its parental line L88-6. Comparison of the spectra showed that this separation resulted from increased levels of maltose and/or sucrose in this transgenic line, and that differences in free amino acids were also apparent. More detailed studies of the amino acid composition of material grown in 2000 were carried out using gas chromatography-mass spectrometry. The most noticeable difference was that the samples grown at Rothamsted consistently contained larger amounts of acidic amino acids (glutamic, aspartic) and their amides (glutamine, asparagine). In addition, the related lines, L88-6 and B73-6-1, both contained larger amounts of proline and γ -aminobutyric acid when grown at Long Ashton than at Rothamsted. The results clearly demonstrate that the environment affects the metabolome and that any differences between the control and transgenic lines are generally within the same range as the differences observed between the control lines grown on different sites and in different years.
SUMMARYThe outcome of bacterial infection in plants is determined by the ability of the pathogen to successfully occupy the apoplastic space and deliver a constellation of effectors that collectively suppress basal and effectortriggered immune responses. In this study, we examined the metabolic changes associated with establishment of disease using analytical techniques that interrogated a range of chemistries. We demonstrated clear differences in the metabolome of Arabidopsis thaliana leaves infected with virulent Pseudomonas syringae within 8 h of infection. In addition to confirmation of changes in phenolic and indolic compounds, we identified rapid alterations in the abundance of amino acids and other nitrogenous compounds, specific classes of glucosinolates, disaccharides, and molecules that influence the prevalence of reactive oxygen species. Our data illustrate that, superimposed on defence suppression, pathogens reconfigure host metabolism to provide the sustenance required to support exponentially growing populations of apoplastically localized bacteria. We performed a detailed baseline study reporting the metabolic dynamics associated with bacterial infection. Moreover, we have integrated these data with the results of transcriptome profiling to distinguish metabolomic pathways that are transcriptionally activated from those that are post-transcriptionally regulated.
Summary• Overexpression of AtPAP2, a purple acid phosphatase (PAP) with a unique C-terminal hydrophobic motif in Arabidopsis, resulted in earlier bolting and a higher seed yield. Metabolite analysis showed that the shoots of AtPAP2 overexpression lines contained higher levels of sugars and tricarboxylic acid (TCA) metabolites. Enzyme assays showed that sucrose phosphate synthase (SPS) activity was significantly upregulated in the overexpression lines. The higher SPS activity arose from a higher level of SPS protein, and was independent of SnRK1.• AtPAP2 was found to be targeted to both plastids and mitochondria via its C-terminal hydrophobic motif. Ectopic expression of a truncated AtPAP2 without this C-terminal motif in Arabidopsis indicated that the subcellular localization of AtPAP2 is essential for its biological actions.• Plant PAPs are generally considered to mediate phosphorus acquisition and redistribution. AtPAP2 is the first PAP shown to modulate carbon metabolism and the first shown to be dualtargeted to both plastids and mitochondria by a C-terminal targeting signal.• One PAP-like sequence carrying a hydrophobic C-terminal motif could be identified in the genome of the smallest free-living photosynthetic eukaryote, Ostreococcus tauri. This might reflect a common ancestral function of AtPAP2-like sequences in the regulation of carbon metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.