Understanding how fracture networks develop in shale formations is important when exploiting unconventional hydrocarbon reservoirs and analyzing the integrity of the seals of conventional and carbon capture and storage reservoirs. Despite this importance, experimentally derived fracture data for shale remains sparse. Here we characterize shale from Nash Point in South Wales, United Kingdom, in terms of ultrasonic wave velocities, tensile strength, and fracture toughness (KIc). We measure these properties in multiple orientations, including angles oblique to the three principal fracture orientations—Short‐transverse, Arrester, and Divider. We find that the Nash Point shale is mechanically highly anisotropic, with tensile strength and KIc values lowest in the Short‐transverse orientation and highest in the Arrester and Divider orientations. Fractures that propagate in a direction oblique or normal to bedding commonly deflect toward the weaker Short‐transverse orientation. Such deflected fractures can no longer be considered to propagate in pure mode‐I. We therefore present a method to correct measured KIc values to account for deflection by calculating mode‐I and mode‐II deflection stress intensities (KId and KIId, respectively). Because of the mixed‐mode nature of deflected fractures, we adopt a fracture (Gc) energy‐based approach that allows analysis of critical fracture propagation conditions for both deflected and undeflected fractures in all orientations. We find that Gc increases as the angle from the Short‐transverse plane increases. We conclude that a modified elliptical function, previously applied to tensile strength and KIc, can be used to estimate values of Gc at angles between the Short‐transverse and Arrester orientations.
A number of key processes, both natural and anthropogenic, involve the fracture of rocks subjected to tensile stress, including vein growth and mineralization, and the extraction of hydrocarbons through hydraulic fracturing. In each case, the fundamental material property of mode‐I fracture toughness must be overcome in order for a tensile fracture to propagate. While measuring this parameter is relatively straightforward at ambient pressure, estimating fracture toughness of rocks at depth, where they experience confining pressure, is technically challenging. Here we report a new analysis that combines results from thick‐walled cylinder burst tests with quantitative acoustic emission to estimate the mode‐I fracture toughness (KIc) of Nash Point Shale at confining pressure simulating in situ conditions to approximately 1‐km depth. In the most favorable orientation, the pressure required to fracture the rock shell (injection pressure, Pinj) increases from 6.1 MPa at 2.2‐MPa confining pressure (Pc), to 34 MPa at 20‐MPa confining pressure. When fractures are forced to cross the shale bedding, the required injection pressures are 30.3 MPa (at Pc = 4.5 MPa) and 58 MPa (Pc = 20 MPa), respectively. Applying the model of Abou‐Sayed et al. (1978, https://doi.org/10.1029/JB083iB06p02851) to estimate the initial flaw size, we calculate that this pressure increase equates to an increase in KIc from 0.36 to 4.05 MPa·m1/2 as differential fluid pressure (Pinj − Pc) increases from 3.2 to 22.0 MPa. We conclude that the increasing pressure due to depth in the Earth will have a significant influence on fracture toughness, which is also a function of the inherent anisotropy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.