Karyotype analysis has significant clinical importance. Effectively detecting the exact abnormity of chromosomes will contribute to the diagnosis of certain diseases. In this paper, I presented a convenient and reliable system that was capable of detecting t(9;22) chromosome translocation, a specific chromosomal abnormity in CML patients. The functions of this system were based on deep learning algorithms, and I created a classification system using ResNet. The model could effectively detect t(9;22) translocation based on images of chromosomes 9 and 22. This model achieves a 97.5% accuracy on the validation set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.