Wood fibers possess natural unique hierarchical and mesoporous structures that enable a variety of new applications beyond their traditional use. We dramatically modulate the propagation of light through random network of wood fibers. A highly transparent and clear paper with transmittance >90% and haze <1.0% applicable for high-definition displays is achieved. By altering the morphology of the same wood fibers that form the paper, highly transparent and hazy paper targeted for other applications such as solar cell and antiglare coating with transmittance >90% and haze >90% is also achieved. A thorough investigation of the relation between the mesoporous structure and the optical properties in transparent paper was conducted, including full-spectrum optical simulations. We demonstrate commercially competitive multitouch touch screen with clear paper as a replacement for plastic substrates, which shows excellent process compatibility and comparable device performance for commercial applications. Transparent cellulose paper with tunable optical properties is an emerging photonic material that will realize a range of much improved flexible electronics, photonics, and optoelectronics.
Thermoelectric generators (TEGs) fabricated using additive manufacturing methods are attractive because they offer the advantages of scalability, lower cost, and potentially higher power density than conventional TEGs. Additive manufacturing of TEGs requires active thermoelectric particles to be dispersed in a polymer binder to synthesize printable slurries, and printed films to be subsequently subjected to a long and high temperature curing to enhance their thermoelectic properties. A large amount of polymer binder present in composite films results in a sizable loss in the electrical conductivity. In addition, a long and high-temperature film curing results is a slow and energy intensive fabrication process. In this work, we demonstrate the feasibility of using a small amount (≤10
−3
wt ratio) of novel nanofiber cellulose (NFC) as a binder to provide sufficient adhesion strength to hold the TE particles together in the composite films. We also demonstrate a pressure induced densification process to enhance the thermoelectic properties of printed composite films. This novel approach has the potential to fundamentally transform the manufacting method for printing TEGs by eliminating the need of long-duration and high-temperature curing. A higher applied pressure leads to a compact packing and densification of films resulting in an improvement in the electrical conductivity. The highest power factor achieved for best performing p-type thermoelectric-NFC composite film subjected to pressure induced densification is 611 μW/m-K
2
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.