We present explicit geometric decompositions of the hyperbolic complements of alternating kuniform tiling links, which are alternating links whose projection graphs are k-uniform tilings of S 2 , E 2 , or H 2 . A consequence of this decomposition is that the volumes of spherical alternating k-uniform tiling links are precisely twice the maximal volumes of the ideal Archimedean solids of the same combinatorial description, and the hyperbolic structures for the hyperbolic alternating tiling links come from the equilateral realization of the k-uniform tiling on H 2 . In the case of hyperbolic tiling links, we are led to consider links embedded in thickened surfaces Sg × I with genus g ≥ 2 and totally geodesic boundaries. We generalize the bipyramid construction of Adams to truncated bipyramids and use them to prove that the set of possible volume densities for all hyperbolic links in Sg × I, ranging over all g ≥ 2, is a dense subset of the interval [0, 2voct], where voct ≈ 3.66386 is the volume of the ideal regular octahedron.
Abstract. The volume density of a hyperbolic link is defined as the ratio of hyperbolic volume to crossing number. We study its properties and a closely-related invariant called the determinant density. It is known that the sets of volume densities and determinant densities of links are dense in the interval [0, voct]. We construct sequences of alternating knots whose volume and determinant densities both converge to any x ∈ [0, voct]. We also investigate the distributions of volume and determinant densities for hyperbolic rational links, and establish upper bounds and density results for these invariants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.