The Flat Top Cavity, located in the PSI HIPA Ring Cyclotron leaks RF power of several kilo Watts into the cyclotrons vacuum space causing several complications. A detailed electromagnetic model was created and simulations performed to analyze the mechanisms by which power is leaking out of the Flat Top Cavity. The tolerances needed to limit the leaked power in future iterations of the Flat Top cavity are reported. Comparison of the model to measurements are described as well as two potential methods to limit power leakage. These studies will have direct impact on future RF cavity designs for cyclotrons as power levels increase and higher RF fields are required.
A plasma has been observed inside the vacuum chamber of the PSI Ring Cyclotron. This ionized gas cloud maybe a substantial contributor to several interior components having reduced lifetimes. The plasma's generation has been directly linked to the voltage that is applied to the Flat Top Cavity through visual confirmation using CCD cameras. A spectrometer was used to correlate the plasma's intensity and ignition to the Flat Top Cavity voltage as well as to determine the composition of the plasma. This paper reports on the analysis of the plasma using spectroscopy. The spectrometer data was analyzed to determine the composition of the plasma and that the plasma intensity (luminosity) directly corresponds to the Flat Top voltage. The results showed that the plasma was comprised of elements consistent with the cyclotrons vacuum interior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.