The present investigation's main goal is to assess butt joint and T-joint plates containing misalignment, undercut and porosity welding defects by studying the influence of the defect’s parameters on the fatigue life. The fatigue life is predicted using ANSYS ver. 19 Software. The results of finite element analysis are used in the regression analysis to find relationship between the fatigue life and defects parameters. The findings demonstrated that finite element modeling and the pervious published experimental tests were in good agreement with maximum error percentage 4 %. The fatigue life differed substantially depending on the defect’s parameters.
In this paper friction stir welding process has been studied whereby utilized FEM method (Ansys software ver. 20). The main effective parameter in this process were rotational speed, linear speed, tool shoulder radius, heat transfer coefficient and clamping percentage to study their influence on represent temperature, von misses stress and frictional stress distribution. Because of the difficulty to obtained the number of the simulation cases in order to get the most important results, Taguchi L27 orthogonal array was apply to reduce the total number of the simulation cases. Pure copper (t = 3.18 mm) material type was applied as work plate material. ANOVA statistical tool was utilized to achieved the optimization process after the simulation cases done. Percentage of contribution of each parameter can be obtained by ANOVA table and mean of S/N ratio plot. Validation process was achieved between the Current study and experiment work in the temperature distribution field with percentage of error 2.7 %. From optimization result It is found that the optimum condition in order to obtained good results for temperature was rotational speed of (450 rpm), linear speed (2.75 mm/s), tool shoulder radius (7 mm), heat transfer coefficient (300 w/m2 K), clamping distance percentage (40 %). And for von misses stress was rotational speed of (550 rpm), linear speed (3 mm/s), tool shoulder radius (7 mm), heat transfer coefficient (300 w/m2 K), clamping distance percentage (20 %). While for frictional stress was rotational speed of (450 rpm), linear speed (2.5 mm/s), tool shoulder radius (7 mm), heat transfer coefficient (300 w/m2 K), clamping distance percentage (30 %).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.