The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells.
Background: Adequate nutrition plays an important role in bone mass accrual and maintenance and has been demonstrated as a significant tool for the prevention of fractures in individuals with osteoporosis.
BackgroundThe Vitamin D Receptor gene (VDR) is expressed in many tissues and modulates the expression of several other genes. The purpose of this study was to investigate the association between metabolic syndrome (MetSyn) with the presence of VDR 2228570 C > T and VDR 1544410 A > G polymorphisms in Brazilian adults.MethodsTwo hundred forty three (243) individuals were included in a cross-sectional study. MetSyn was classified using the criteria proposed by National Cholesterol Educational Program - Adult Treatment Panel III. Insulin resistance and β cell secretion were estimated by the mathematical models of HOMA IR and β, respectively. The VDR 2228570 C > T and VDR 1544410 A > G polymorphisms were detected by enzymatic digestion and confirmed by allele specific PCR or amplification of refractory mutation.ResultsIndividuals with MetSyn and heterozygosis for VDR 2228570 C > T have higher concentrations of iPTH and HOMA β than those without this polymorphism, and subjects with recessive homozygosis for the same polymorphisms presented higher insulin resistance than those with the heterozygous genotype. There is no association among VDR 1544410 A > G and components of MetSyn, HOMA IR and β, serum vitamin D (25(OH)D3) and intact parathormone (iPTH) levels in patients with MetSyn. A significant lower concentration of 25(OH)D3 was observed only in individuals without MetSyn in the VDR 1544410 A > G genotype. Additionally, individuals without MetSyn and heterozygosis for VDR 2228570 C > T presented higher concentration of triglycerides and lower HDL than those without this polymorphism.ConclusionsUsing two common VDR polymorphism data suggests they may influence insulin secretion, insulin resistance an serum HDL-cholesterol in our highly heterogeneous population. Whether VDR polymorphism may influence the severity of MetSyn component disorder, warrants examination in larger cohorts used for genome-wide association studies.
ResumoAtualmente, a insuficiência/deficiência de vitamina D tem sido considerada um problema de saúde pública no mundo todo, em razão de suas implicações no desenvolvimento de diversas doen ças, entre elas, o diabetes melito tipo 2 (DMT2), a obesidade e a hipertensão arterial. A deficiência de vitamina D pode predispor à intolerância à glicose, a alterações na secreção de insulina e, assim, ao desenvolvimento do DMT2. Esse possível mecanismo ocorre em razão da presença do receptor de vitamina D em diversas células e tecidos, incluindo células-β do pân creas, no adipócito e no tecido muscular. Em indivíduos obesos, as alterações do sistema endócrino da vitamina D, caracterizada por elevados níveis de PTH e da 1,25(OH) 2 D 3 são responsáveis pelo feedback negativo da síntese hepática de 25-OHD 3 e também pelo maior influxo de cálcio para o meio intracelular, que pode prejudicar a secreção e a sensibilidade à insulina. Na hipertensão, a vitamina D pode atuar via sistema renina-angiotensina e também na função vascular. Há evidên-cias de que a 1,25(OH) 2 D 3 inibe a expressão da renina e bloqueia a proliferação da célula vascular muscular lisa. Entretanto, estudos prospectivos e de intervenção em humanos que comprovem a efetividade da adequação do status da vitamina D sob o aspecto "prevenção e tratamento de doenças endocrinometabólicas" são ainda escassos. Mais pesquisas são necessárias para se ga- AbstRActVitamin D insufficiency/deficiency has been worldwide reported in all age groups in recent years. It has been considered a Public Health matter since decreased levels of vitamin D has been related to several chronic diseases, as type 2 diabetes mellitus (T2DM), obesity and hypertension. Glucose intolerance and insulin secretion has been observed during vitamin D deficiency, both in animals and humans resulting in T2DM. The supposed mechanism underlying these findings is presence of vitamin D receptor in several tissues and cells, including pancreatic β-cells, adipocyte and muscle cells. In obese individuals, the impaired vitamin D endocrine system, characterized by high levels of PTH and 1,25(OH) 2 D 3 could induce a negative feedback for the hepatic synthesis of 25(OH)D and also contribute to a higher intracellular calcium, which in turn secrete less insulin and deteriorate insulin sensitivy. In hypertension, vitamin D could act on renin-angiotensin system and also in vascular function. Administration of 1,25(OH) 2 D 3 could decreases renin gene expression and inhibit vascular smooth muscle cell proliferation. However, prospective and intervention human studies that clearly demonstrates the benefits of vitamin D status adequacy in the prevention and treatment of endocrine metabolic diseases are lacking. Further research still necessary to assure the maximum benefit of vitamin D in such situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.