Acquisition of CCR7 expression is an important phenotype change during dendritic cell (DC) maturation that endows these cells with the capability to migrate to lymph nodes. We have analyzed the possible role of CCR7 on the regulation of the survival of DCs. Stimulation with CCR7 ligands CCL19 and CCL21 inhibits apoptotic hallmarks of serum-deprived DCs, including membrane phosphatidylserine exposure, loss of mitochondria membrane potential, increased membrane blebs, and nuclear changes. Both chemokines induced a rapid activation of phosphatidylinositol 3-kinase/Akt1 (PI3K/Akt1), with a prolonged and persistent activation of Akt1. Interference with PI3K, Gi, or G protein ␥ subunits abrogated the effects of the chemokines on Akt1 activation and on survival. In contrast, inhibition of extracellular signal-related kinase 1/2 (Erk1/2), p38, or c-Jun N-terminal kinase (JNK) was ineffective. Nuclear factor-B (NFB) was involved in the antiapoptotic effects of chemokines because inhibition of NFB blunted the effects of CCL19 and CCL21 on survival. Furthermore, chemokines induced down-regulation of the NFB inhibitor IB, an increase of NFB DNA-binding capability, and translocation of the NFB subunit p65 to the nucleus. In summary, in addition to its well-established role in chemotaxis, we show that CCR7 also induces antiapoptotic signaling in mature DCs.
IntroductionApoptosis, or programmed cell death, is a physiologic process involved in the normal development and maintenance of tissue homeostasis. 1 The final stage of this process that leads to the demise of the cell is executed by proteases that degrade vital molecular components of the cell. 1 Hallmarks of cells undergoing apoptosis include disruption of mitochondria transmembrane potential, apparition of numerous blebs on the membrane, increased nuclear condensation, and increased appearance of phosphatidylserine (PS) in the outer leaflet of the cell membrane.Apoptosis is a programmed process that is regulated through a complex mechanism that involves multiple molecular intermediates. Surface receptors may inhibit apoptosis by relaying intracellular signals that either repress proapoptotic molecules and/or stimulate antiapoptotic ones. 1 Multiple pathways that inhibit apoptosis use as a common signaling intermediate phosphatidylinositol 3Ј-kinase (PI3K) and its downstream effector Akt1. 1-3 Akt1 phosphorylates and inhibits a variety of proapoptotic regulators and also regulates proteins that promote cell survival. [1][2][3] In this regard, it has been shown that Akt1 may activate IB kinase, which induces phosphorylation and subsequent degradation of IB, a molecule that binds and retains transcription factor nuclear factor-B (NFB) in the cytoplasm. 1-3 Upon IB degradation, NFB translocates to the nucleus and stimulates transcription from a variety of antiapoptotic genes. 2,4 Apart from PI3K/Akt1, in some cell settings, mitogen-activated protein kinase (MAPK) family members have also been shown to play an important role as regulators of apoptosis. [5][6][7] Dendritic ...