Genetic regulation of gene expression is dynamic, as transcription can change during cell differentiation and across cell types. We mapped expression quantitative trait loci (eQTLs) throughout differentiation to elucidate the dynamics of genetic effects on cell type specific gene expression. We generated time-series RNA-sequencing data, capturing 16 time points from induced pluripotent stem cells to cardiomyocytes, in 19 human cell lines. We identified hundreds of dynamic eQTLs that change over time, with enrichment in enhancers of relevant cell types. We also found nonlinear dynamic eQTLs, which affect only intermediate stages of differentiation, and cannot be found by using data from mature tissues. These fleeting genetic associations with gene regulation may represent a new mechanism to explain complex traits and disease. We highlight one example of a nonlinear eQTL that is associated with body mass index.
Circadian rhythms are fundamental biological phenomena generated by molecular genetic mechanisms known as circadian clocks. There is increasing evidence that circadian synchronization of physiological and cellular processes contribute to the wellness of organisms, curbing pathologies such as cancer and premature aging. Therefore, there is a need to understand how circadian clocks orchestrate interactions between the organism's internal processes and the environment. Here, we explore the nexus between the clock and oxidative stress susceptibility in Drosophila melanogaster. We exposed flies to acute oxidative stress induced by hydrogen peroxide (H2O2), and determined that mortality rates were dependent on time at which exposure occurred during the day /night cycle. The daily susceptibility rhythm was abolished in flies with a null mutation in the core clock gene period (per) abrogating clock function. Furthermore, lack of per increased susceptibility to H2O2 compared to wild-type flies, coinciding with enhanced generation of mitochondrial H2O2 and decreased catalase activity due to oxidative damage. Taken together, our data suggest that the circadian clock gene period is essential for maintaining a robust anti-oxidative defense.
There is increasing evidence that aging is affected by biological (circadian) clocks - the internal mechanisms that coordinate daily changes in gene expression, physiological functions and behavior with external day/night cycles. Recent data suggest that disruption of the mammalian circadian clock results in accelerated aging and increased age-related pathologies such as cancer; however, the links between loss of daily rhythms and aging are not understood. We sought to determine whether disruption of the circadian clock affects lifespan and healthspan in the model organism Drosophila melanogaster. We examined effects of a null mutation in the circadian clock gene period (per01) on the fly healthspan by challenging aging flies with short-term oxidative stress (24h hyperoxia) and investigating their response in terms of mortality hazard, levels of oxidative damage, and functional senescence. Exposure to 24h hyperoxia during middle age significantly shortened the life expectancy in per01 but not in control flies. This homeostatic challenge also led to significantly higher accumulation of oxidative damage in per01 flies compared to controls. In addition, aging per01 flies showed accelerated functional decline, such as lower climbing ability and increased neuronal degeneration compared to age-matched controls. Together, these data suggest that impaired stress defense pathways may contribute to accelerated aging in the per mutant. In addition, we show that the expression of per gene declines in old wild type flies, suggesting that the circadian regulatory network becomes impaired with age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.