We expressed the γ-subspecies of protein kinase C (γ-PKC) fused with green fluorescent protein (GFP) in various cell lines and observed the movement of this fusion protein in living cells under a confocal laser scanning fluorescent microscope. γ-PKC–GFP fusion protein had enzymological properties very similar to that of native γ-PKC. The fluorescence of γ-PKC– GFP was observed throughout the cytoplasm in transiently transfected COS-7 cells. Stimulation by an active phorbol ester (12-O-tetradecanoylphorbol 13-acetate [TPA]) but not by an inactive phorbol ester (4α-phorbol 12, 13-didecanoate) induced a significant translocation of γ-PKC–GFP from cytoplasm to the plasma membrane. A23187, a Ca2+ ionophore, induced a more rapid translocation of γ-PKC–GFP than TPA. The A23187-induced translocation was abolished by elimination of extracellular and intracellular Ca2+. TPA- induced translocation of γ-PKC–GFP was unidirected, while Ca2+ ionophore–induced translocation was reversible; that is, γ-PKC–GFP translocated to the membrane returned to the cytosol and finally accumulated as patchy dots on the plasma membrane. To investigate the significance of C1 and C2 domains of γ-PKC in translocation, we expressed mutant γ-PKC–GFP fusion protein in which the two cysteine rich regions in the C1 region were disrupted (designated as BS 238) or the C2 region was deleted (BS 239). BS 238 mutant was translocated by Ca2+ ionophore but not by TPA. In contrast, BS 239 mutant was translocated by TPA but not by Ca2+ ionophore. To examine the translocation of γ-PKC–GFP under physiological conditions, we expressed it in NG-108 cells, N-methyl-d-aspartate (NMDA) receptor–transfected COS-7 cells, or CHO cells expressing metabotropic glutamate receptor 1 (CHO/mGluR1 cells). In NG-108 cells , K+ depolarization induced rapid translocation of γ-PKC–GFP. In NMDA receptor–transfected COS-7 cells, application of NMDA plus glycine also translocated γ-PKC–GFP. Furthermore, rapid translocation and sequential retranslocation of γ-PKC–GFP were observed in CHO/ mGluR1 cells on stimulation with the receptor. Neither cytochalasin D nor colchicine affected the translocation of γ-PKC–GFP, indicating that translocation of γ-PKC was independent of actin and microtubule. γ-PKC–GFP fusion protein is a useful tool for investigating the molecular mechanism of γ-PKC translocation and the role of γ-PKC in the central nervous system.
We studied the effects of 12-O-tetradecanoylphorbol 13-acetate (TPA), a protein kinase C (PKC) activator, and calyculin A (CLA), an inhibitor of type 1 and 2A serine/threonine phosphatases, on serotonin uptake by a human placenta choriocarcinoma cell line (BeWo) and COS-7 cells expressing recombinant serotonm transporter (SET). In BeWo cells, treatment with TPA decreased imipramine-sensitive serotonin uptake with a reduction in Vrnax without affecting K,,~. CLA also decreased imipramine-sensitive serotonin uptake in a manner similar to that of TPA. TPA and CLA also decreased the uptake activity of recombinant SET expressed in COS-7 cells as seen in BeWo cells. These effects of TPA and CLA were reversed by staurosporine, a protein kinase inhibitor. To elucidate whether the inhibitory effects of TPA and CLA were due to direct phosphorylation of SET by PKC, site-directed mutagenesis of five putative PKC phosphorylation sites in SET was performed. Serotonin uptake was also down-regulated by TPA and CLA in all nine mutants, suggesting that these inhibitory modulation of SET activity did not act via direct phosphorylation of SET by PKC. Key Words: Serotonin transporter-Phorbol ester-Calyculin A-BeWo cell-Site-directed mutagenesis-Protein kinase C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.