Human Langerhans cells (LCs) are of hematopoietic origin, but cytokine regulation of their development is not fully understood. Notch ligand Delta-1 is expressed in a proportion of the skin. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor-beta1 (TGF-beta1) are also secreted in the skin. We report here that Delta-1, in concert with GM-CSF and TGF-beta1, induces the differentiation of human CD14(+) blood monocytes into cells that express LC markers: CD1a, Langerin, cutaneous lymphocyte-associated antigen, CC chemokine receptor 6, E-cadherin, and Birbeck granules. The resulting cells display phagocytic activity and chemotaxis to macrophage inflammatory protein-1alpha (MIP-1alpha). In response to CD40 ligand and tumor necrosis factor alpha, the cells acquire a mature phenotype of dendritic cells that is characterized by up-regulation of human leukocyte antigen (HLA)-ABC, HLA-DR, CD80, CD86, CD40, and CD54 and appearance of CD83. These cells in turn show chemotaxis toward MIP-1beta and elicit activation of CD8(+) T cells and T helper cell type 1 polarization of CD4(+) T cells. Thus, blood monocytes can give rise to LCs upon exposure to the skin cytokine environment consisting of Delta-1, GM-CSF, and TGF-beta1, which may be, in part, relevant to the development of human epidermal LCs. Our results extend the functional scope of Notch ligand delta-1 in human hematopoiesis.
The Notch/Notch ligand system controls diverse cellular processes. The proteolytic cleavage generates transmembrane and soluble forms of Notch ligands. We examined the effect of a soluble Notch ligand, human Jagged-1, on human cord blood (CB) CD34+ cells, under serum-deprived conditions, using soluble human Jagged-1-immunoglobulin G1 chimera protein (hJagged-1). Soluble hJagged-1 inhibited myeloid colony formation but not erythroid-mix or erythroid colony formation, in the presence of stem cell factor (SCF), interleukin-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF, thrombopoietin, and erythropoietin. Cytological analysis revealed that the decrease in myeloid colonies resulted mainly from the inhibition of macrophage colony formation. Furthermore, soluble hJagged-1 led to the inhibition of macrophage colony formation supported by M-CSF plus SCF and GM-CSF plus SCF. Delayed-addition experiments and the analysis of colony sizes demonstrated that soluble hJagged-l inhibited the growth of macrophage progenitors by acting in the early stage of macrophage development. The direct action of hJagged-1 was confirmed by the enhanced expression of the HES-1 (hairy enhancer of the split-1) gene. These results suggest that soluble hJagged-1 may regulate human hematopoiesis in the monocyte/macrophage lineage.
Summary. Dendritic cells (DC) with the potential to induce anti-tumour immunity represent one of the promising candidates for cancer vaccines. Efficiency of ex vivo DC generation depends on culture conditions, especially protein components in the plasma or serum used. Using human serum albumin (HSA), we devised a constant and reproducible culture method for DC generation from peripheral blood CD141 cells. The number of DC obtained with 2% HSA-supplemented cultures containing granulocyte-macrophage colony-stimulating factor and interleukin 4 were consistently higher than in cultures with various concentrations of autologous plasma or serum. The concentrations and time points tested for plasma or serum considerably affected the number of DC recovered. DC prepared with HSA acquired the ability to uptake dextran, and expressed high levels of major histocompatibility (MHC) and co-stimulatory molecules similar to DC cultured with autologous plasma or serum. Although DC cultured with autologous plasma or serum consisted of CD1a 1 and CD1a 2 populations, DC differentiated in the presence of HSA expressed CD1a. DC obtained with HSA primed and induced immunogenic peptide-specific cytotoxic T lymphocytes against a tumour rejection antigen, HER2. These findings suggest that our method for preparation of DC with HSA should prove valuable in DC generation for immunotherapy.
We examined the actions of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) on human monocytes, using a serum-free culture system. GM-CSF and IL-3 did not promote the differentiation of monocytes into macrophages but rather into cells with a phenotype compatible with that of immature dendritic cells (DCs). The addition of fetal bovine serum to serum-free cultures with GM-CSF or IL-3 restored the differentiation of monocytes into macrophages. Cells generated with GM-CSF or IL-3 elicited phagocytic activity. Cells generated in the presence of GM-CSF or IL-3, followed by the addition of tumor necrosis factor-a, displayed a phenotype of mature DCs, and primed and stimulated immunogenic peptide-specific T lymphocytes. Surprisingly, GM-CSF and IL-3 inhibited macrophage colony-stimulating factor (M-CSF)-dependent differentiation of monocytes into macrophages and induced differentiation into immature DCs. We asked if the inhibition of M-CSF-dependent differentiation into macrophages by GM-CSF or IL-3 was associated with the expression of M-CSF receptors (M-CSFR). GM-CSF or IL-3 down-regulated the expression of M-CSFR. These data demonstrate that GM-CSF and IL-3 primarily support the differentiation of monocytes into DCs and inhibit M-CSF-dependent differentiation into macrophages by suppressing the expression of M-CSFR, thereby promoting differentiation into DCs. Am.
We report a 31-year-old female with t(8;21)(q22;q22) acute myeloid leukemia (AML), M2 in the FAB classification. Complete remission was achieved with daunorubicin and cytarabine induction therapy followed by three courses of high-dose cytarabine consolidation. Only 3 months later, the patient relapsed with granulocytic sarcomas (GSs) in her rhinopharynx, external acoustic meatus, and bone marrow. She received focal radiation for the GSs and successfully underwent reinduction chemotherapy. Subsequently, she received a matched related donor peripheral blood stem cell transplantation followed by high-dose chemotherapy and is now in a second remission. We summarized 79 reported cases of t(8;21) AML with GS and reviewed the literature to identify differences in the characteristics of t(8;21) AML with GS between adults and children. To our knowledge, this is the first report of pharyngeal GS in t(8;21) AML, and focal irradiation plus more intensive postinduction therapy during first remission, such as allogeneic-SCT, may be effective in adult t(8;21) AML patients with GS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.