Basidiomycetes produce a wide variety of sesquiterpenoids, which attract significant interest in pharmaceutical and industrial applications. Structural diversification of sesquiterpenoids is performed by sesquiterpene synthases (STSs), which produce a wide array of backbone structures; therefore, functional characterization and increased biocatalyst collection of STSs are important for expanding scientific knowledge and meeting the needs of advanced biotechnology. Gene identification and functional annotation of STSs from the basidiomycetous fungi Agaricus bisporus, Auriscalpium vulgare, Lepista nuda, Pleurotus ostreatus and Trametes versicolor were conducted. Through these investigations, the catalytic functions of 30 STSs were revealed using recombinant enzymes heterologously expressed in Saccharomyces cerevisiae. Furthermore, the unique function of an STS from P. ostreatus, PoSTS-06, was revealed to be the production of a novel sesquiterpene hydrocarbon that we named pleostene. The absolute structure of pleostene was determined by NMR spectroscopy and X-ray crystallography using the crystalline sponge method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.