In this study, we describe the first aqueous microwave-assisted synthesis of histidine-containing peptides in high purity and with low racemization. We have previously shown the effectiveness of our synthesis methodology for peptides including difficult sequences using water-dispersible 9-fluorenylmethoxycarbonyl-amino acid nanoparticles. It is an organic solvent-free, environmentally friendly method for chemical peptide synthesis. Here, we studied the racemization of histidine during an aqueous-based coupling reaction with microwave irradiation. Under our microwave-assisted protocol using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride, the coupling reaction can be efficiently performed with low levels of racemization of histidine. Application of this water-based microwave-assisted protocol with water-dispersible 9-fluorenylmethoxycarbonyl-amino acid nanoparticles led to the successful synthesis of the histidine-containing hexapeptide neuropeptide W-30 (10-15), Tyr-His-Thr-Val-Gly-Arg-NH₂, in high yield and with greatly reduced histidine racemization.
Abstract:We have previously developed water-based microwave (MW)-assisted peptide synthesis using Fmoc-amino acid nanopaticles. It is an organic solvent-free, environmentally friendly method for peptide synthesis. Here we describe water-based MW-assisted solid-phase synthesis using Boc-amino acid nanoparticles. The microwave irradiation allowed rapid solid-phase reaction of nanoparticle reactants on the resin in water. We also demonstrated the syntheses of Leu-enkephalin, Tyr-Gly-Gly-Phe-Leu-OH, and difficult sequence model peptide, Val-Ala-Val-Ala-Gly-OH, using our water-based MW-assisted protocol with Boc-amino acid nanoparticles.
We have developed a microwave (MW)-assisted peptide synthesis using Fmoc-amino acid nanoparticles in water previously. It is an organic solvent-free, environmentally friendly method for peptide synthesis. In this study, we have investigated the racemization of cysteine during an aqueous based coupling reaction with MW irradiation. Under our MW-assisted protocol using WSCI and DMTMM, the coupling reaction can be performed with low levels of racemization of cysteine. We also demonstrated the synthesis of the nonapeptide oxytocin analogue, Cys(Acm)-Tyr-Ile-Gln-Asn- Cys(Acm)-Pro-Leu-Gly-NH2 using our water based MW-assisted protocol with Fmoc-amino acid nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.