In Japan, two Eutrema species, wasabi (Eutrema japonicum, the important traditional Japanese condiment) and yuriwasabi (E. tenue), have been recognized as endemic species. We sequenced complete chloroplast (cp) genomes of seven wasabi and yuriwasabi accessions from Japan to study their phylogeny and evolution, using molecular dating of species divergence. Phylogenetic analyses of the complete cp DNA of these two Japanese species and five other Eurasian Eutrema species revealed that wasabi and yuriwasabi did not form a monophyletic group. One yuriwasabi accession (Gifu) formed a clade with E. yunnanense from China, indicating that this accession should be considered as a different species from the other yuriwasabi accessions. We reveal that Japanese Eutrema species diverged from the ‘E. yunnanense–yuriwasabi (Gifu)’ clade approximately 1.3 million years ago (Mya), suggesting that the connection between Japan and the Eurasian continent has existed more recently than the Quaternary period. The abundance of cp sequence data in this study also allowed the detection of genetic differentiation among wasabi cultivars. The two polymorphic sites detected between ‘Fujidaruma’ and ‘Shimane No.3’ were used to develop genotyping markers. The cp genome information provided here will thus inform the evolutionary histories of Japanese Eutrema species and help in genotyping wasabi cultivars.
Wasabi (Japanese horseradish, Eutrema japonicum) is the only cultivated species in the genus Eutrema with functional components that provide a strong pungent flavor. To evaluate genetic resources for wasabi breeding, we surveyed variations in the two most abundant isothiocyanate (ITC) components in wasabi, allyl isothiocyanate (AITC) and 6-methylsulfinyl (hexyl) isothiocyanate (6-MSITC, hexaraphane). We also examined the phylogenetic relationships among 36 accessions of wild and cultivated wasabi in Japan using chloroplast DNA analysis. Our results showed that (i) the 6-MSITC content in currently cultivated wasabi accessions was significantly higher than in escaped cultivars, whereas the AITC content was not significantly different. (ii) Additionally, the 6-MSITC content in cultivated wasabi was significantly lower in the spring than during other seasons. This result suggested that the 6-MSITC content responds to environmental conditions. (iii) The phylogenetic position and the 6-MSITC content of accessions from Rebun, Hokkaido Prefecture had different profiles compared with those from southern Honshu, Japan, indicating heterogeneity of the Rebun populations from other Japanese wasabi accessions. (iv) The total content of AITC and 6-MSITC in cultivated wasabi was significantly higher than that of wild wasabi. In conclusion, old cultivars or landraces of wasabi, "zairai", are the most suitable candidates for immediate use as genetic resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.