The pattern of circadian behavioral rhythms is photoperioddependent, highlighted by the conservation of a phase relation between the behavioral rhythm and photoperiod. A model of two separate, but mutually coupled, circadian oscillators has been proposed to explain photoperiodic responses of behavioral rhythm in nocturnal rodents: an evening oscillator, which drives the activity onset and entrains to dusk, and a morning oscillator, which drives the end of activity and entrains to dawn. Continuous measurement of circadian rhythms in clock gene Per1 expression by a bioluminescence reporter enabled us to identify the separate oscillating cell groups in the mouse suprachiasmatic nucleus (SCN), which composed circadian oscillations of different phases and responded to photoperiods differentially. The circadian oscillation in the posterior SCN was phase-locked to the end of activity under three photoperiods examined. On the other hand, the oscillation in the anterior SCN was phase-locked to the onset of activity but showed a bimodal pattern under a long photoperiod [light-dark cycle (LD)18:6]. The bimodality in the anterior SCN reflected two circadian oscillatory cell groups of early and late phases. The anterior oscillation was unimodal under intermediate (LD12:12) and short (LD6:18) photoperiods, which was always phase-lagged behind the posterior oscillation when the late phase in LD18:6 was taken. The phase difference was largest in LD18:6 and smallest in LD6:18. These findings indicate that three oscillating cell groups in the SCN constitute regionally specific circadian oscillations, and at least two of them are involved in photoperiodic response of behavioral rhythm.bioluminescence reporter ͉ circadian rhythm ͉ clock gene ͉ photoperiod ͉ behavioral rhythm A daptation to seasonal changes in environment is critical to the survival of many organisms. Photoperiodic time measurement by the circadian clock is one of the strategies by which they conserve the phase relation between behavioral events such as the activity onset and dawn or dusk (1). A dramatic change induced by photoperiod is in the length of an activity band, the duration of activity in behavioral rhythms. Nocturnal rodents such as rats and mice exhibit compressed activity bands in long photoperiods and decompressed bands in short photoperiods. A long-standing hypothesis for the photoperiodic time measurement assumes two separate, but mutually coupled, circadian oscillators that drive the activity onset and end of activity, respectively, and respond to dawn and dusk differentially. Therefore, their phase-relationship encodes day lengths and changes the length of an activity band (1).The circadian clock in mammals is located in the suprachiasmatic nucleus (SCN) of the hypothalamus; it entrains to a light-dark cycle (LD) and determines the phases of overt circadian rhythms in behavior and physiology (2). Over the last decade, our understanding of the circadian clock in the SCN has advanced tremendously (3-5). The SCN consists of a number of oscillating cel...
Hyperpolarization-activated cyclic nucleotide-gated channel 4 gene HCN4 is a pacemaker channel that plays a key role in automaticity of sinus node in the heart, and an HCN4 mutation was reported in a patient with sinus node dysfunction. Expression of HCN4 in the heart is, however, not confined to the sinus node cells but is found in other tissues, including cells of the conduction system. On the other hand, mutations in another cardiac ion channel gene, SCN5A, also cause sinus node dysfunction as well as other cardiac arrhythmias, including long QT syndrome, Brugada syndrome, idiopathic ventricular fibrillation, and progressive cardiac conduction disturbance. These observations imply that HCN4 abnormalities may be involved in the pathogenesis of various arrhythmias, similar to the SCN5A mutations. In this study, we analyzed patients suffering from sinus node dysfunction, progressive cardiac conduction disease, and idiopathic ventricular fibrillation for mutations in HCN4. A missense mutation, D553N, was found in a patient with sinus node dysfunction who showed recurrent syncope, QT prolongation in electrocardiogram, and polymorphic ventricular tachycardia, torsade de pointes. In vitro functional study of the D553N mutation showed a reduced membranous expression associated with decreased If currents because of a trafficking defect of the HCN4 channel in a dominant-negative manner. These data suggest that the loss of function of HCN4 is associated with sinus nodal dysfunction and that a consequence of pacemaker channel abnormality might underlie clinical features of QT prolongation and polymorphic ventricular tachycardia developed under certain conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.