Anaplastic large cell lymphoma (ALCL) is a subtype of non-Hodgkin's lymphoma characterized by the CD30+ large neoplastic cells and sometimes carries a t(2;5)(p23;q35). Recently, we found a novel hyperphosphorylated 80-kD protein tyrosine kinase, p80, in ALCLs with t(2;5). Subsequent cDNA cloning showed p80 to be a fusion protein of two genes, the novel tyrosine kinase gene and the nucleophosmin gene, in accordance with the sequence of the NPM/ALK gene (Morris et al, Science 263:1281, 1994). Meanwhile, the clinicopathologic features of p80-carrying ALCLs have remained unclear. Paraffin sections of 105 cases of ALCL were immunostained using anti-p80 antibody, and 30 of them were shown to express p80. Clinicopathologic comparison between p80-positive and -negative ALCLs showed that p80-positive cases occurred in a far younger patient age group (16.2 +/- 12.9 years; p80- negative cases, 51.0 +/- 22.3 years; P < .0001) and the patients showed a far better 5-year survival rate (79.8%; p80-negative group, 32.9%; P < .01). These data showed that p80-positive ALCL is a distinct entity both clinically and pathogenetically and should be differentiated from p80-negative ALCL.
Tumor necrosis factor (TNF) has been reported to be identical to "cachectin," a monokine which we have previously proposed as a mediator of the enhanced catabolism observed in patients or animals responding to various invasive stimuli such as infections. Detailed quantitative studies were conducted on the effects of TNF on fatty acid metabolism in 3T3-L1 cells in order to explore the extent of the catabolic effects exerted by TNF compared with those by the crude cachectin. 3T3-L1 adipocytes responded to recombinant human TNF, showing a decrease in LPL activity and an increase in intracellular lipolysis. When TNF in the crude cachectin preparation was completely neutralized with anti-TNF antibody, about 75% of LPL suppression activity in the crude cachectin was absorbed, indicating that most of the mediator responsible for LPL suppression in the crude preparation is TNF. In contrast to the above effect on LPL, TNF markedly increased the lipolysis of stored fat in the cells. The effect on LPL was observed as early as 2 h after the addition of TNF, but enhancement of lipolysis required a time lag of at least 3 h before any increase of glycerol release became apparent. The effective concentrations of TNF for the stimulation of lipolysis were much higher (2.5 to 49 nM) than those for LPL suppression (50 pM to 50 nM), but both were in the same range as the concentration required for tumoricidal effect. These results demonstrate that cachectin is synonymous with TNF and that it plays an important role in the pathophysiology of deranged lipid metabolism through both suppression of LPL and enhancement of lipolysis in patients coping with invasive conditions such as infections.
The DNA sequences were determined for the lipoprotein lipase (LPL) gene from five unrelated Japanese patients with familial LPL deficiency. The results demonstrated that all five patients are homozygotes for distinct point mutations dispersed throughout the LPL gene. Patient 1 has a G-to-A transition at the first nucleotide of intron 2, which abolishes normal splicing.Patient 2 has a nonsense mutation in exon 3 (Tyr" -> Stop) and patient 3 in exon 8 (Trp"2 --Stop). The latter mutation emphasizes the importance of the carboxy-terminal portion of the enzyme in the expression of LPL activity. Missense mutations were identified in patient 4 (Asp2'-Glu) and patient 5 (Arg'3 His) in the strictly conserved amino acids. Expression study of both mutant genes in COS-1 cells produced inactive enzymes, establishing the functional significance of the two missense mutations. In these patients, postheparin plasma LPL mass was either virtually absent (patients 1 and 2) or significantly decreased (patients 3-5). To detect these mutations more easily, we developed a rapid diagnostic test for each mutation. We also determined the DNA haplotypes for patients and confirmed the occurrence of multiple mutations on the chromosomes with an identical haplotype. These results demonstrate that familial LPL deficiency is a heterogeneous genetic disease caused by a wide variety of gene mutations. (J. Clin. Invest.
The effects on plasma lipids of daily intraperitoneal injections of 4mg of melatonin (N‐acetyl‐5‐methoxytrypt‐amine) for 10 27 day periods were examined biochemically and morphologically in rats fed regular and high‐cholesterol (1% cholesterol, 0.5% cholic acid) diets. Melatonin administration had no significant effect on plasma lipids and lipoproteins in the rats on a normal diet but blunted the effects of a high‐cholesterol diet on these parameters. No effects of melatonin on lipase activity were noted. Melatonin also diminished the fatty infiltration in the liver of animals on the high‐cholesterol diet. The high‐cholesterol diet produced major increases in VLDL and LDL cholesterol and protein content, and decreases in HDL cholesterol and protein. Melatonin decreased the extent of this plasma lipoprotein increase, although it did not completely prevent the phenomenon. Therefore, the effect is thought to be quantitative and not quantitative in nature. Acta Pathol Jpn 39: 613‐618, 1989.
Impairment of insulin and IGF-I signaling in the brain is one of the causes of dementia associated with diabetes mellitus and Alzheimer's disease. However, the precise pathological processes are largely unknown. In the present study, we found that SH2-containing inositol 5'-phosphatase 2 (SHIP2), a negative regulator of phosphatidylinositol 3,4,5-trisphosphate-mediated signals, is widely expressed in adult mouse brain. When a dominant-negative mutant of SHIP2 was expressed in cultured neurons, insulin signaling was augmented, indicating physiological significance of endogenous SHIP2 in neurons. Interestingly, SHIP2 mRNA and protein expression levels were significantly increased in the brain of type 2 diabetic db/db mice. To investigate the impact of increased expression of SHIP2 in the brain, we further employed transgenic mice overexpressing SHIP2 and found that increased amounts of SHIP2 induced the disruption of insulin/IGF-I signaling through Akt. Neuroprotective effects of insulin and IGF-I were significantly attenuated in cultured cerebellar granule neurons from SHIP2 transgenic mice. Consistently, terminal deoxynucleotide transferase-mediated dUTP nick end labeling assay demonstrated that the number of apoptosis-positive cells was increased in cerebral cortex of the transgenic mice at an elderly age. Furthermore, SHIP2 transgenic mice exhibited impaired memory performance in the Morris water maze, step-through passive avoidance, and novel-object-recognition tests. Importantly, inhibition of SHIP2 ameliorated the impairment of hippocampal synaptic plasticity and memory formation in db/db mice. These results suggest that SHIP2 is a potent negative regulator of insulin/IGF-I actions in the brain, and excess amounts of SHIP2 may be related, at least in part, to brain dysfunction in insulin resistance with type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.