In this paper we study existence and uniqueness of solutions for a boundary value problem for (p,q) -difference equations with nonlocal integral boundary conditions, by using classical fixed point theorems. Examples illustrating the main results are also presented. (2010): 05A30, 39A13, 34A12.
Mathematics subject classification
In this paper, we investigate the existence and uniqueness of solutions for a boundary value problem for second-order quantum (p,q)-difference equations with separated boundary conditions, by using classical fixed point theorems. Examples illustrating the main results are also presented.
<abstract><p>In this paper, we investigate the existence and uniqueness of solutions to a nonlinear coupled systems of $ (k, \varphi) $-Hilfer fractional differential equations supplemented with nonlocal integro-multi-point boundary conditions. We make use of the Banach contraction mapping principle to obtain the uniqueness result, while the existence results are proved with the aid of Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }} $'s fixed point theorem and Leray-Schauder alternative for the given problem. Examples demonstrating the application of the abstract results are also presented. Our results are of quite general nature and specialize in several new results for appropriate values of the parameters $ \beta_1, $ $ \beta_2, $ and the function $ \varphi $ involved in the problem at hand.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.